Abstract
The water-octanol partition coefficient is an important physicochemical property for small molecule drug design. Here, we report our participation in the SAMPL6 logP prediction challenge with free energy perturbation (FEP) calculations in the water phase and in the 1-octanol phase using Drude polarizable force fields. Root mean square error (RMSE) and mean absolute error (MAE) of our prediction are equal to 1.85 and 1.25 logP units. The errors are not evenly distributed. Out of eleven SAMPL6 solutes, FEP/Drude performed very badly on three molecules (deviations all larger than 2 logP units) but good on the remaining eight (deviations all less than 1 logP unit). We find while FEP converges well within one nanosecond in water, simulations in 1-octanol need much longer simulation time and possibly more independent runs for sampling. We also find out that 1-octanol, albeit being a non-polar solvent, still polarizes solute molecules and forms stable hydrogen bonds with them. At the end, we attempt to reweight FEP trajectories with QM/Drude calculations and discuss possible caveats in our simulation setup.
Similar content being viewed by others
References
Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve r&d productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203
Bannan CC, Burley KH, Chiu M, Shirts MR, Gilson MK, Mobley DL (2016) Blind prediction of cyclohexane-water distribution coefficients from the sampl5 challenge. J Comput Aided Mol Des 30(11):927–944
Rustenburg AS, Dancer J, Lin B, Feng JA, Ortwine DF, Mobley DL, Chodera JD (2016) Measuring experimental cyclohexane-water distribution coefficients for the sampl5 challenge. J Comput Aided Mol Des 30(11):945–958
Pickard FC, König G, Tofoleanu F, Lee J, Simmonett AC, Shao Y, Ponder JW, Brooks BR (2016) Blind prediction of distribution in the sampl5 challenge with qm based protomer and pKa corrections. J Comput Aided Mol Des 30(11):1087–1100
König G, Pickard FC, Huang J, Simmonett AC, Tofoleanu F, Lee J, Dral PO, Prasad S, Jones M, Shao Y et al (2016) Calculating distribution coefficients based on multi-scale free energy simulations: an evaluation of mm and qm/mm explicit solvent simulations of water-cyclohexane transfer in the sampl5 challenge. J Comput Aided Mol Des 30(11):989–1006
Işık M, Levorse D, Mobley DL, Rhodes T, Chodera JD (2020) Octanol-water partition coefficient measurements for the sampl6 blind prediction challenge. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-019-00271-3
Kundi V, Ho J (2019) Predicting octanol-water partition coefficients: are quantum mechanical implicit solvent models better than empirical fragment-based methods? J Phys Chem B 123(31):6810–6822
Huang J, Lopes P, Roux B, MacKerell A (2014) Recent advances in polarizable force fields for macromolecules: microsecond simulations of proteins using the classical drude oscillator model. J Phys Chem Lett 5:3144–3150
Lemkul J, Huang J, Roux B, MacKerell A (2016) An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. Chem Rev 116:4983–5013
Huang J, MacKerell AD (2018) Force field development and simulations of intrinsically disordered proteins. Curr Opin Struct Biol 48:40–48
Krämer A, Pickard FC, Huang J, Venable RM, Simmonett AC, Reith D, Kirschner KN, Pastor RW, Brooks BR (2019) Interactions of water and alkanes: modifying additive force fields to account for polarization effects. J Chem Theor Comput 15(6):3854–3867
Manzoni F, Söderhjelm P (2014) Prediction of hydration free energies for the sampl4 data set with the amoeba polarizable force field. J Comput Aided Mol Des 28(3):235–244
Bradshaw RT, Essex JW (2016) Evaluating parametrization protocols for hydration free energy calculations with the amoeba polarizable force field. J Chem Theor Comput 12(8):3871–3883
Bell DR, Qi R, Jing Z, Xiang JY, Mejias C, Schnieders MJ, Ponder JW, Ren P (2016) Calculating binding free energies of host-guest systems using the amoeba polarizable force field. Phys Chem Chem Phys 18(44):30261–30269
Laury ML, Wang Z, Gordon AS, Ponder JW (2018) Absolute binding free energies for the sampl6 cucurbit [8] uril host-guest challenge via the amoeba polarizable force field. J Comput Aided Mol Des 32(10):1087–1095
Kamath G, Kurnikov I, Fain B, Leontyev I, Illarionov A, Butin O, Olevanov M, Pereyaslavets L (2016) Prediction of cyclohexane-water distribution coefficient for SAMPL5 drug-like compounds with the QMPFF3 and arrow polarizable force fields. J Comput Aided Mol Des 30(11):977–988
Lamoureux G, Roux B (2003) Modeling induced polarization with classical drude oscillators: theory and molecular dynamics simulation algorithm. J Chem Phys 119:3025–3039
Lamoureux G, MacKerell AD, Roux B (2003) A simple polarizable model of water based on classical Drude oscillators. J Chem Phys 119:5185–5197
Lopes P, Huang J, Shim J, Luo Y, Li H, Roux B, MacKerell A (2013) Polarizable force field for peptides and proteins based on the classical drude oscillator. J Chem Theor Comput 9:5430–5449
Lemkul JA, MacKerell AD Jr (2017) Polarizable force field for dna based on the classical drude oscillator: I. Refinement using quantum mechanical base stacking and conformational energetics. J Chem Theor Comput 13(5):2053–2071
Lemkul JA, MacKerell AD Jr (2017) Polarizable force field for dna based on the classical drude oscillator: II. Microsecond molecular dynamics simulations of duplex DNA. J Chem Theor Comput 13(5):2072–2085
Lemkul JA, MacKerell AD Jr (2018) Polarizable force field for RNA based on the classical Drude oscillator. J Comput Chem 39(32):2624–2646
Chowdhary J, Harder E, Lopes PE, Huang L, MacKerell AD Jr, Roux B (2013) A polarizable force field of dipalmitoylphosphatidylcholine based on the classical Drude model for molecular dynamics simulations of lipids. J Phys Chem B 117(31):9142–9160
Li H, Chowdhary J, Huang L, He X, MacKerell AD Jr, Roux B (2017) Drude polarizable force field for molecular dynamics simulations of saturated and unsaturated Zwitterionic lipids. J Chem Theor Comput 13(9):4535–4552
Patel DS, He X, MacKerell AD Jr (2014) Polarizable empirical force field for hexopyranose monosaccharides based on the classical drude oscillator. J Phys Chem B 119(3):637–652
Small MC, Aytenfisu AH, Lin FY, He X, MacKerell AD (2017) Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates. J Comput Aided Mol Des 31(4):349–363
Yu H, Whitfield TW, Harder E, Lamoureux G, Vorobyov I, Anisimov VM, MacKerell AD Jr, Roux B (2010) Simulating monovalent and divalent ions in aqueous solution using a drude polarizable force field. J Chem Theor Comput 6(3):774–786
Lemkul JA, MacKerell AD Jr (2016) Balancing the interactions of mg2+ in aqueous solution and with nucleic acid moieties for a polarizable force field based on the classical Drude oscillator model. J Phys Chem B 120(44):11436–11448
Lin FY, Lopes PE, Harder E, Roux B, MacKerell AD Jr (2018) Polarizable force field for molecular ions based on the classical Drude oscillator. J Chem Inf Model 58(5):993–1004
Jiang W, Hardy DJ, Phillips JC, MacKerell AD Jr, Schulten K, Roux B (2010) High-performance scalable molecular dynamics simulations of a polarizable force field based on classical drude oscillators in NAMD. J Phys Chem Lett 2(2):87–92
Dequidt A, Devemy J, Padua AA (2015) Thermalized drude oscillators with the LAMMPS molecular dynamics simulator. J Chem Inf Model 56(1):260–268
Lemkul JA, Roux B, van der Spoel D, MacKerell AD Jr (2015) Implementation of extended Lagrangian dynamics in gromacs for polarizable simulations using the classical Drude oscillator model. J Comp Chem 36(19):1473–1479
Huang J, Lemkul JA, Eastman PK, MacKerell AD Jr (2018) Molecular dynamics simulations using the drude polarizable force field on GPUs with OpenMM: implementation, validation, and benchmarks. J Comput Chem 39(21):1682–1689
Nishikawa N, Han K, Wu X, Tofoleanu F, Brooks BR (2018) Comparison of the umbrella sampling and the double decoupling method in binding free energy predictions for sampl6 octa-acid host-guest challenges. J Comput Aided Mol Des 32(10):1075–1086
Jones MR, Brooks BR, Wilson AK (2016) Partition coefficients for the SAMPL5 challenge using transfer free energies. J Comput Aided Mol Des 30(11):1129–1138
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian\(^{}\sim\)16 Revision C.01. Gaussian Inc., Wallingford
Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023
Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98(2):1358–1371
Woon DE, Dunning TH Jr (1995) Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J Chem Phys 103(11):4572–4585
Woon DE, Dunning TH Jr (1994) Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J Chem Phys 100(4):2975–2988
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187–217
Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S et al (2009) CHARMM: the biomolecular simulation program. J Comp Chem 30(10):1545–1614
Girard M, Ehlen A, Shakya A, Bereau T, de la Cruz MO (2019) Hoobas: a highly object-oriented builder for molecular dynamics. Comput Mater Sci 167:25–33
Lamoureux G, Harder E, Vorobyov IV, Roux B, MacKerell AD (2006) A polarizable model of water for molecular dynamics simulations of biomolecules. Chem Phys Lett 418(1):245–249
Anisimov VM, Vorobyov IV, Roux B, MacKerell AD (2007) Polarizable empirical force field for the primary and secondary alcohol series based on the classical Drude model. J Chem Theor Comput 3(6):1927–1946
Vorobyov IV, Anisimov VM, MacKerell AD (2005) Polarizable empirical force field for alkanes based on the classical Drude oscillator model. J Phys Chem B 109(40):18988–18999
Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092
Van Gunsteren W, Berendsen H (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34(5):1311–1327
Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y et al (2015) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theor Comput 12(1):405–413
Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang LP, Simmonett AC, Harrigan MP, Stern CD et al (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13(7):e1005659
Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML (1996) Explicit reversible integrators for extended systems dynamics. Mol Phys 87(5):1117–1157
Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519
Sugita Y, Kitao A, Okamoto Y (2000) Multidimensional replica-exchange method for free-energy calculations. J Chem Phys 113(15):6042–6051
Zacharias M, Straatsma T, McCammon J (1994) Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration. J Chem Phys 100(12):9025–9031
König G, Pickard FC, Huang J, Thiel W, MacKerell AD, Brooks BR, York DM (2018) A comparison of qm/mm simulations with and without the drude oscillator model based on hydration free energies of simple solutes. Molecules 23(10):2695
Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129(12):124105
Klimovich PV, Shirts MR, Mobley DL (2015) Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des 29(5):397–411
Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J Phys Chem B 111(45):13052–13063
Wennberg CL, Murtola T, Páll S, Abraham MJ, Hess B, Lindahl E (2015) Direct-space corrections enable fast and accurate Lorentz-Berthelot combination rule Lennard-Jones lattice summation. J Chem Theor Comput 11(12):5737–5746
Leonard AN, Simmonett AC, Pickard FC, Huang J, Venable RM, Klauda JB, Brooks BR, Pastor RW (2018) Comparison of additive and polarizable models with explicit treatment of long-range Lennard-Jones interactions using alkane simulations. J Chem Theor Comput 14(2):948–958
Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22(8):1420–1426
Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098
Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785
Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396
Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652
Dunning TH Jr, Peterson KA, Wilson AK (2001) Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J Chem Phys 114(21):9244–9253
Shao Y, Gan Z, Epifanovsky E, Gilbert AT, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng X et al (2015) Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 113(2):184–215
Woodcock HL III, Hodošček M, Gilbert AT, Gill PM, Schaefer HF III, Brooks BR (2007) Interfacing q-chem and charmm to perform qm/mm reaction path calculations. J Comp Chem 28(9):1485–1502
Fox SJ, Pittock C, Fox T, Tautermann CS, Skylaris CK (2011) Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules. J Chem Phys 135(22):224107
Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89(4):2193–2218
Genheden S, Martinez AIC, Criddle MP, Essex JW (2014) Extensive all-atom monte carlo sampling and qm/mm corrections in the sampl4 hydration free energy challenge. J Comput Aided Mol Des 28(3):187–200
Weast RC, Astle MJ, Beyer WH et al (1988) CRC handbook of chemistry and physics, vol 69. CRC Press, Boca Raton, p E-52
Palombo F, Sassi P, Paolantoni M, Morresi A, Cataliotti RS (2006) Comparison of hydrogen bonding in 1-octanol and 2-octanol as probed by spectroscopic techniques. J Phys Chem B 110(36):18017–18025
Lang BE (2012) Solubility of water in octan-1-ol from (275 to 369) k. J Chem Eng Data 57(8):2221–2226
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comp Chem 25(9):1157–1174
Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I et al (2010) Charmm general force field: a force field for drug-like molecules compatible with the charmm all-atom additive biological force fields. J Comp Chem 31(4):671–690
Huang L, Roux B (2013) Automated force field parameterization for nonpolarizable and polarizable atomic models based on ab initio target data. J Chem Theor Comput 9(8):3543–3556
Huang J, Mei Y, König G, Simmonett AC, Pickard FC, Wu Q, Wang LP, MacKerell AD, Brooks BR, Shao Y (2017) An estimation of hybrid quantum mechanical molecular mechanical polarization energies for small molecules using polarizable force-field approaches. J Chem Theor Comput 13(2):679–695
Huang J, Simmonett AC, Pickard FC, MacKerell AD, Brooks BR (2017) Mapping the drude polarizable force field onto a multipole and induced dipole model. J Chem Phys 147(161):702
Wang H, Yang W (2016) Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory. J Chem Phys 144(22):224,107
König G, Hudson PS, Boresch S, Woodcock HL (2014) Multiscale free energy simulations: an efficient method for connecting classical md simulations to qm or qm/mm free energies using non-boltzmann bennett reweighting schemes. J Chem Theor Comput 10(4):1406–1419
Li P, Jia X, Pan X, Shao Y, Mei Y (2018) Accelerated computation of free energy profile at ab initio quantum mechanical/molecular mechanics accuracy via a semi-empirical reference potential. I. Weighted thermodynamics perturbation. J Chem Theor Comput 14(11):5583–5596
Pan X, Li P, Ho J, Pu J, Mei Y, Shao Y (2019) Accelerated computation of free energy profile at ab initio quantum mechanical/molecular mechanical accuracy via a semi-empirical reference potential. II. Recalibrating semi-empirical parameters with force matching. Phys Chem Chem Phys 21:20595–20605
Ganguly A, Boulanger E, Thiel W (2017) Importance of mm polarization in qm/mm studies of enzymatic reactions: assessment of the qm/mm drude oscillator model. J Chem Theor Comput 13(6):2954–2961
Kratz EG, Walker AR, Lagardère L, Lipparini F, Piquemal JP, Andrés Cisneros G (2016) Lichem: a qm/mm program for simulations with multipolar and polarizable force fields. J Comp Chem 37(11):1019–1029
Dziedzic J, Mao Y, Shao Y, Ponder J, Head-Gordon T, Head-Gordon M, Skylaris CK (2016) Tinktep: a fully self-consistent, mutually polarizable qm/mm approach based on the amoeba force field. J Chem Phys 145(12):124106
Acknowledgements
The work is supported by National Natural Science Foundation of China (Grant No. 21803057) and by Zhejiang Provincial Natural Science Foundation of China (Grant No. LR19B030001). We acknowledge the usage of the HPC cluster of Westlake University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ding, Y., Xu, Y., Qian, C. et al. Predicting partition coefficients of drug-like molecules in the SAMPL6 challenge with Drude polarizable force fields. J Comput Aided Mol Des 34, 421–435 (2020). https://doi.org/10.1007/s10822-020-00282-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-020-00282-5