[go: up one dir, main page]

Skip to main content
Log in

Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kubitzki MB, de Groot BL (2008) Structure 16(8):1175

    Article  CAS  Google Scholar 

  2. Aden J, Wolf-Watz M (2007) J Am Chem Soc 129(45):14003

    Article  Google Scholar 

  3. Hanson JA, Duderstadt K, Watkins LP, Bhattacharyya S, Brokaw J, Chu JW, Yang H (2007) Proc Natl Acad Sci USA 104(46):18055

    Article  CAS  Google Scholar 

  4. Schrank TP, Wrabl JO, Hilser VJ (2013) Top Curr Chem 337:95

    Article  CAS  Google Scholar 

  5. Seyler SL, Beckstein O (2014) Mol Simul 1:855–877

    Article  Google Scholar 

  6. Sinev MA, Sineva EV, Ittah V, Haas E (1996) Biochemistry 35(20):6425

    Article  CAS  Google Scholar 

  7. Shapiro YE, Sinev MA, Sineva EV, Tugarinov V, Meirovitch E (2000) Biochemistry 39(22):6634

    Article  CAS  Google Scholar 

  8. Wolf-Watz M, Thai V, Henzler-Wildman K, Hadjipavlou G, Eisenmesser EZ, Kern D (2004) Nat Struct Mol Biol 11(10):945

    Article  CAS  Google Scholar 

  9. Shapiro YE, Meirovitch E (2006) J Phys Chem B 110(23):11519

    Article  CAS  Google Scholar 

  10. Aden J, Verma A, Schug A, Wolf-Watz M (2012) J Am Chem Soc 134(40):16562

    Article  Google Scholar 

  11. Lin CY, Huang JY, Lo LW (2013) J Phys Chem B 117(45):13947

    Article  CAS  Google Scholar 

  12. Olsson U, Wolf-Watz M (2010) Nat Commun 1:111

    Article  Google Scholar 

  13. Miyashita O, Onuchic JN, Wolynes PG (2003) Proc Natl Acad Sci USA 100(22):12570

    Article  CAS  Google Scholar 

  14. Temiz NA, Meirovitch E, Bahar I (2004) Proteins 57(3):468

    Article  CAS  Google Scholar 

  15. Maragakis P, Karplus M (2005) J Mol Biol 352(4):807

    Article  CAS  Google Scholar 

  16. Chu JW, Voth GA (2007) Biophys J 93(11):3860

    Article  CAS  Google Scholar 

  17. Lu Q, Wang J (2008) J Am Chem Soc 130(14):4772

    Article  CAS  Google Scholar 

  18. Daily MD, Makowski L, Phillips GN Jr, Cui Q (2012) Chem Phys 396:84

    Article  CAS  Google Scholar 

  19. Kruger DM, Ahmed A, Gohlke H (2012) Nucleic Acids Res 40(Web Server issue):W310

    Article  Google Scholar 

  20. Das A, Gur M, Cheng MH, Jo S, Bahar I, Roux B (2014) PLoS Comput Biol 10(4):e1003521

    Article  Google Scholar 

  21. Daily MD, Phillips GN Jr, Cui Q (2010) J Mol Biol 400(3):618

    Article  CAS  Google Scholar 

  22. Lou H, Cukier RI (2006) J Phys Chem B 110(47):24121

    Article  CAS  Google Scholar 

  23. Arora K, Brooks CL 3rd (2007) Proc Natl Acad Sci USA 104(47):18496

    Article  CAS  Google Scholar 

  24. Beckstein O, Denning EJ, Perilla JR, Woolf TB (2009) J Mol Biol 394(1):160

    Article  CAS  Google Scholar 

  25. Potoyan DA, Zhuravlev PI, Papoian GA (2012) J Phys Chem B 116(5):1709

    Article  CAS  Google Scholar 

  26. Gur M, Madura JD, Bahar I (2013) Biophys J 105(7):1643

    Article  CAS  Google Scholar 

  27. Wang J, Shao Q, Xu Z, Liu Y, Yang Z, Cossins BP, Jiang H, Chen K, Shi J, Zhu W (2014) J Phys Chem B 118(1):134

    Article  CAS  Google Scholar 

  28. Krishnamurthy H, Lou HF, Kimple A, Vieille C, Cukier RI (2005) Proteins 58(1):88

    Article  CAS  Google Scholar 

  29. Lou H, Cukier RI (2006) J Phys Chem B 110(25):12796

    Article  CAS  Google Scholar 

  30. Pontiggia F, Zen A, Micheletti C (2008) Biophys J 95(12):5901

    Article  CAS  Google Scholar 

  31. Brokaw JB, Chu JW (2010) Biophys J 99(10):3420

    Article  CAS  Google Scholar 

  32. Song HD, Zhu F (2013) PLoS One 8(7):e68023

    Article  CAS  Google Scholar 

  33. Ping J, Hao P, Li YX, Wang JF (2013) Biomed Res Int 2013:628536

    Article  Google Scholar 

  34. van der Spoel D, Lindahl E (2003) J Phys Chem B 107(40):11178

    Article  Google Scholar 

  35. Piana S, Lindorff-Larsen K, Shaw DE (2011) Biophys J 100(9):L47

    Article  CAS  Google Scholar 

  36. Lange OF, van der Spoel D, de Groot BL (2010) Biophys J 99(2):647

    Article  CAS  Google Scholar 

  37. Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE (2012) PLoS One 7(2):e32131

    Article  CAS  Google Scholar 

  38. Beauchamp KA, Lin YS, Das R, Pande VS (2012) J Chem Theory Comput 8(4):1409

    Article  CAS  Google Scholar 

  39. Piana S, Klepeis JL, Shaw DE (2014) Curr Opin Struct Biol 24:98

    Article  CAS  Google Scholar 

  40. MacKerell AD Jr, Banavali N, Foloppe N (2000) Biopolymers 56(4):257

    Article  CAS  Google Scholar 

  41. Wang JM, Cieplak P, Kollman PA (2000) J Comput Chem 21(12):1049

    Article  CAS  Google Scholar 

  42. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) J Comput Chem 25(13):1656

    Article  CAS  Google Scholar 

  43. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) J Phys Chem B 105(28):6474

    Article  CAS  Google Scholar 

  44. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces, vol 14. Springer, Netherlands, p 331

    Chapter  Google Scholar 

  45. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926

    Article  CAS  Google Scholar 

  46. Muller CW, Schulz GE (1992) J Mol Biol 224(1):159

    Article  CAS  Google Scholar 

  47. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) Bioinformatics 29(7):845

    Article  CAS  Google Scholar 

  48. Miyamoto S, Kollman PA (1992) J Comput Chem 13(8):952

    Article  CAS  Google Scholar 

  49. Hess B (2008) J Chem Theory Comput 4(1):116

    Article  CAS  Google Scholar 

  50. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81(8):3684

    Article  CAS  Google Scholar 

  51. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126(1):014101

    Article  Google Scholar 

  52. Darden T, York D, Pedersen L (1993) J Chem Phys 98(12):10089

    Article  CAS  Google Scholar 

  53. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33

    Article  CAS  Google Scholar 

  54. Muller CW, Schlauderer GJ, Reinstein J, Schulz GE (1996) Structure 4(2):147

    Article  CAS  Google Scholar 

  55. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Eur Biophys J 40(7):843

    Article  CAS  Google Scholar 

  56. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) J Mol Biol 215(3):403

    Article  CAS  Google Scholar 

  57. Diederichs K, Schulz GE (1991) J Mol Biol 217(3):541

    Article  CAS  Google Scholar 

  58. Schlauderer GJ, Proba K, Schulz GE (1996) J Mol Biol 256(2):223

    Article  CAS  Google Scholar 

  59. Roe DR, Okur A, Wickstrom L, Hornak V, Simmerling C (2007) J Phys Chem B 111(7):1846

    Article  CAS  Google Scholar 

  60. Whitford PC, Miyashita O, Levy Y, Onuchic JN (2007) J Mol Biol 366(5):1661

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The numerical calculations reported in this paper were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources). We thank them for providing us superb computational resources and technical help for this research. Scientific Research Projects Office (BAP) of Yuzuncu Yil University has supported this research under the project number 2015-FBE-YL008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Tekpinar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7080 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unan, H., Yildirim, A. & Tekpinar, M. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field. J Comput Aided Mol Des 29, 655–665 (2015). https://doi.org/10.1007/s10822-015-9849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9849-0

Keywords

Navigation