[go: up one dir, main page]

Skip to main content
Log in

Surflex-Dock: Docking benchmarks and real-world application

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Benchmarks for molecular docking have historically focused on re-docking the cognate ligand of a well-determined protein–ligand complex to measure geometric pose prediction accuracy, and measurement of virtual screening performance has been focused on increasingly large and diverse sets of target protein structures, cognate ligands, and various types of decoy sets. Here, pose prediction is reported on the Astex Diverse set of 85 protein ligand complexes, and virtual screening performance is reported on the DUD set of 40 protein targets. In both cases, prepared structures of targets and ligands were provided by symposium organizers. The re-prepared data sets yielded results not significantly different than previous reports of Surflex-Dock on the two benchmarks. Minor changes to protein coordinates resulting from complex pre-optimization had large effects on observed performance, highlighting the limitations of cognate ligand re-docking for pose prediction assessment. Docking protocols developed for cross-docking, which address protein flexibility and produce discrete families of predicted poses, produced substantially better performance for pose prediction. Performance on virtual screening performance was shown to benefit by employing and combining multiple screening methods: docking, 2D molecular similarity, and 3D molecular similarity. In addition, use of multiple protein conformations significantly improved screening enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) J Mol Biol 161:269

    Article  CAS  Google Scholar 

  2. Goodsell DS, Olson AJ (1990) Proteins 8:195

    Article  CAS  Google Scholar 

  3. Goodsell DS, Morris GM, Olson AJ (1996) J Mol Recognit 9:1

    Article  CAS  Google Scholar 

  4. Jones G, Willett P, Glen RC (1995) J Mol Biol 245:43

    Article  CAS  Google Scholar 

  5. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727

    Article  CAS  Google Scholar 

  6. Welch W, Ruppert J, Jain AN (1996) Chem Biol 3:449

    Article  CAS  Google Scholar 

  7. Jain AN (1996) J Comput Aided Mol Des 10:427

    Article  CAS  Google Scholar 

  8. Ruppert J, Welch W, Jain AN (1997) Protein Sci 6:524

    Article  CAS  Google Scholar 

  9. Rarey M, Kramer B, Lengauer T, Klebe G (1996) J Mol Biol 261:470

    Article  CAS  Google Scholar 

  10. Rarey M, Kramer B, Lengauer T (1997) J Comput Aided Mol Des 11:369

    Article  CAS  Google Scholar 

  11. Bissantz C, Folkers G, Rognan D (2000) J Med Chem 43:4759

    Article  CAS  Google Scholar 

  12. Jain AN (2003) J Med Chem 46:499

    Article  CAS  Google Scholar 

  13. Perola E, Walters WP, Charifson PS (2004) Proteins 56:235

    Article  CAS  Google Scholar 

  14. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49:5912

    Article  CAS  Google Scholar 

  15. Pham TA, Jain AN (2006) J Med Chem 49:5856

    Article  CAS  Google Scholar 

  16. Huang N, Shoichet BK, Irwin JJ (2006) J Med Chem 49:6789

    Article  CAS  Google Scholar 

  17. Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WT, Mortenson PN, Murray CW (2007) J Med Chem 50:726

    Article  CAS  Google Scholar 

  18. Sutherland JJ, Nandigam RK, Erickson JA, Vieth M (2007) J Chem Inf Model 47:2293

    Article  CAS  Google Scholar 

  19. Verdonk ML, Mortenson PN, Hall RJ, Hartshorn MJ, Murray CW (2008) J Chem Inf Model 48:2214

    Article  CAS  Google Scholar 

  20. Jain AN, Nicholls A (2008) J Comput Aided Mol Des 22:133

    Article  CAS  Google Scholar 

  21. Jain AN (2008) J Comput Aided Mol Des 22:201

    Article  CAS  Google Scholar 

  22. Warren G, McGaughey GB, Nevins N (2012) J Comput Aided Mol Des, this issue

  23. Jain AN (2009) J Comput Aided Mol Des 23:355

    Article  CAS  Google Scholar 

  24. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) J Chem Inf Model 49:1455

    Article  CAS  Google Scholar 

  25. Jain AN (2007) J Comput Aided Mol Des 21:281

    Article  CAS  Google Scholar 

  26. Cleves AE, Jain AN (2006) J Med Chem 49:2921

    Article  CAS  Google Scholar 

  27. Cleves AE, Jain AN (2008) J Comput Aided Mol Des 22:147

    Article  CAS  Google Scholar 

  28. Jain AN (2004) J Med Chem 47:947

    Article  CAS  Google Scholar 

  29. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47(7):1739–1749

    Google Scholar 

  30. Spitzer R, Cleves AE, Jain AN (2011) Proteins 79:2746

    Article  CAS  Google Scholar 

  31. Chen X, Lin Y, Liu M, Gilson MK (2002) Bioinformatics 18:130

    Article  CAS  Google Scholar 

  32. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) Nucleic Acids Res 37:W623

    Article  CAS  Google Scholar 

  33. Perkins E, Sun D, Nguyen A, Tulac S, Francesco M, Tavana H, Nguyen H, Tugendreich S, Barthmaier P, Couto J, Yeh E, Thode S, Jarnagin K, Jain AN, Morgans D, Melese T (2001) Cancer Res 61:4175

    CAS  Google Scholar 

  34. Jain AN (2000) J Comput Aided Mol Des 14:199

    Article  CAS  Google Scholar 

  35. Hawkins PC, Skillman AG, Nicholls A (2007) J Med Chem 50:74

    Article  CAS  Google Scholar 

  36. Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M, Muchmore SW, Brown SP, Grant JA, Haigh JA, Nevins N, Jain AN, Kelley B (2010) J Med Chem 53:3862

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge NIH for partial funding of the work (grant GM070481) and Ann Cleves for comments on the manuscript. Dr. Jain has a financial interest in BioPharmics LLC, a biotechnology company whose main focus is in the development of methods for computational modeling in drug discovery. Tripos Inc. has exclusive commercial distribution rights for Surflex-Dock and Surflex-Sim, licensed from BioPharmics LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay N. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitzer, R., Jain, A.N. Surflex-Dock: Docking benchmarks and real-world application. J Comput Aided Mol Des 26, 687–699 (2012). https://doi.org/10.1007/s10822-011-9533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9533-y

Keywords

Navigation