Abstract
Aligning and overlaying two or more bio-active molecules is one of the key tasks in computational drug discovery and bio-activity prediction. Especially chemical-functional molecule characteristics from the view point of a macromolecular target represented as a 3D pharmacophore are the most interesting similarity measure when describing and analyzing macromolecule-ligand interaction. In this study, a novel approach for aligning rigid three-dimensional molecules according to their chemical-functional pharmacophoric features is presented and compared to the overlay of experimentally determined poses in a comparable macromolecule coordinate frame. The presented approach identifies optimal chemical feature pairs using distance and density characteristics obtained by correlating pharmacophoric geometries and thus proves to be faster than existing combinatorial alignment methods and creates more reasonable alignments than pure atom-based methods. Examples will be provided to demonstrate the feasibility, speed and intuitiveness of this method.













Similar content being viewed by others
References
Krovat EM, Fruhwirth KH, Langer T (2005) J Chem Inf Model 1:146
Laggner C, Schieferer C, Fiechtner B, Poles G, Hoffmann RD, Glossmann H, Langer T, Moebius FF (2005) J Med Chem 15:4754
Schuster D, Laggner C, Steindl TM, Palusczak A, Hartmann RW, Langer T (2006) J Chem Inf Model 3:1301
Schuster D, Laggner C, Steindl TM, Langer T (2006) Curr Drug Discov Technol 1:1
Steindl T, Laggner C, Langer T (2005) J Chem Inf Model 3:716
Böhm H-J, Klebe G, Kubinyi H (1996) Spektrum Akademischer Verlag
Lemmen C, Lengauer T (2000) J Comput Aided Mol Des 3:215
Martin YC, Bures MG, Danaher EA, DeLazzer J, Lico I, Pavlik PA (1993) J Comput Aided Mol Des 1:83
Bron C, Kerbosch J (1973) Commun ACM 9:575
Barnum D, Greene J, Smellie A, Sprague P (1996) J Chem Inf Comput Sci 3:563
Langer T, Krovat EM (2003) Curr Opin Drug Discov Devel 3:370
Langer T, Hoffmann RD (2001) Curr Pharm Des 7:509
DS Visualizer, version 1.5, available from Accelrys, Inc., 10188 Telesis Court, Suite 100, San Diego, CA 92121, USA
Jones G, Willett P, Glen RC (1995) J Comput Aided Mol Des 6:532
Prabhu NV, Zhu P, Sharp KA (2004) J Comp Chem 16:2049
EON, available from OpenEye Scientific Software (www.eyesopen.com), 3600 Cerrillos Rd., Suite 1107, Santa Fe, NM 87507, USA
Haigh JA, Pickup BT, Grant JA, Nicholls A (2005) J Chem Inf Model 3:673
ROCS, available from OpenEye Scientific Software (www.eyesopen.com), 3600 Cerrillos Rd., Suite 1107, Santa Fe, NM 87507, USA
Bostrom J (2001) J Comput Aided Mol Des 12:1137
Kirchmair J, Laggner C, Wolber G, Langer T (2005) J Chem Inf Model 2:422
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 1:235
Kirchmair J, Wolber G, Laggner C, Langer T (2006) J Chem Inf Model 46:1848
Bostrom J, Greenwood JR, Gottfries J (2003) J Mol Graph Model 5:449
Richmond NJ, Willett P, Clark RD (2004) J Mol Graph Model 2:199
Kuhn HW (1955) Naval Res Logist Quart 2:83
Wolber G, Langer T (2005) J Chem Inf Model 1:160
Kabsch W (1976) Acta Crystal 922
Kabsch W (1978) Acta Crystal 827
Wolber G, Langer T (2001) In: Rational approaches to drug design, H.-D.H.W. Sippl, Editor. 2001, Prous Science: Barcelona, pp. 390–399
OMEGA, version 2.0, available from OpenEye Scientific Software (www.eyesopen.com), 3600 Cerrillos Rd., Suite 1107, Santa Fe, NM 87507, USA
Cramer RD 3rd, Patterson DE, Bunce JD (1989) Prog Clin Biol Res 161
Kubinyi HF, G, Martin YC (1998) Vol. 1–3, Kluwer/ESCOM, Dordrecht
Acknowledgments
We thank Fabian Bendix and Robert Kosara (Inte:Ligand) for their excellent work on LigandScout as well as Christian Laggner, Johannes Kirchmair, Daniela Schuster, Theodora Steindl, and Eva Kleinrath (University of Innsbruck) for testing and helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wolber, G., Dornhofer, A.A. & Langer, T. Efficient overlay of small organic molecules using 3D pharmacophores. J Comput Aided Mol Des 20, 773–788 (2006). https://doi.org/10.1007/s10822-006-9078-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-006-9078-7