[go: up one dir, main page]

Skip to main content

Advertisement

Log in

High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC)

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Metal supported cells as developed according to the DLR SOFC concept by applying plasma deposition technologies were investigated for use as solid oxide electrolyser cells (SOEC) for high temperature steam electrolysis. Cells consisting of a porous ferritic steel support, a diffusion barrier layer, a Ni/YSZ hydrogen electrode, a YSZ electrolyte and a LSCF oxygen electrode were electrochemically characterised by means of i-V characteristics and electrochemical impedance spectroscopy measurements including a long-term test over 2000 h. The cell voltage during electrolysis operation at a current density of −1.0 A cm−2 was 1.28 V at an operating temperature of 850 °C and 1.4 V at 800 °C. A long-term test run over 2000 h with a steam content of 43% at 800 °C and a current density of −0.3 A cm−2 showed a degradation rate of 3.2% per 1000 h. The impedance spectra revealed a significantly enhanced polarisation resistance during electrolysis operation compared to fuel cell operation which was mainly attributed to the hydrogen electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Divisek J, Wendt H (1990) In: Wendt H (ed) Electrochemical hydrogen technologies. Elsevier, Amsterdam

    Google Scholar 

  2. Kreuter W, Hofmann H (1996) In: Veziroglu TN, Winter CJ, Baselt JP, Kreysa G (eds) Hydrogen energy progress XI. International Association for Hydrogen Energy, USA

    Google Scholar 

  3. Janssen H, Emonts B, Groehn HG, Mai H, Reichel R, Stolten D (2001) Hypothesis IV, Vol. 1:172

  4. Schiller G, Henne R, Mohr P, Peinecke V (1998) Int J Hydrogen Energy 23(9):761

    Article  CAS  Google Scholar 

  5. Mogensen M, Bagger C (1998) In: Proc. 1998 Fuel Cell Seminar Palm Springs CA (USA) 16–19 November 1998:96

  6. Mogensen M, Jensen SH, Hauch A, Chorkendorff I, Jacobsen T (2006) In: Bossel U (ed) Proc. 7th European SOFC Forum Lucerne PO301

  7. Dönitz W, Schmidberger R, Steinheil E, Streicher R (1980) Int J Hydrogen Energy 5(1):55

    Article  Google Scholar 

  8. Dönitz W, Erdle E (1985) Int J Hydrogen Energy 10(5):291

    Article  Google Scholar 

  9. Dönitz W, Erdle E (1990) In: Wendt H (ed) Electrochemical hydrogen energy technologies, electrochemical production and combustion of hydrogen. Elsevier, Amsterdam

    Google Scholar 

  10. Erdle E, Dönitz W, Schramm R, Kocha (1992) Int J Hydrogen Energy 17(10):817

    Article  CAS  Google Scholar 

  11. Isenberg AO (1981) Solid State Ionics 3–4:431

    Article  Google Scholar 

  12. Hartvigsen J, Elangovan S, O’Brien JE, Stoots CM, Herring JS, Lessing P (2004) In: Mogensen M (ed) Proc. 6th European SOFC Forum Lucerne :378

  13. O’Brien JE, Stoots CM, Herring JS, Hartvigsen J (2006) J Fuel Cell Sci Tech 3(2):213

    Article  CAS  Google Scholar 

  14. Hong HS, Chae U, Choo ST, Lee KS (2005) J of Power Sources 149:84

    Article  CAS  Google Scholar 

  15. Wang WS, Huang YY, Jung SW, Vohs JM, Gorte RJ (2006) J of the Electrochem Soc 153(11):A2066

    Article  CAS  Google Scholar 

  16. Uchida H, Osada NN, Watanabe M (2004) Solid-State Letters 7(12):A500

    Article  CAS  Google Scholar 

  17. Osada NN, Uchida H, Watanabe M (2006) J of the Electrochem Soc 153(5):A816

    Article  CAS  Google Scholar 

  18. Brisse A, Mogensen M, Schiller G, Vogt U, Zahid M (2008) In: Proc. 17th World Hydrogen Energy Conference (WHEC2008) Brisbane, Australia

  19. Hauch A, Jensen SH, Mogensen M (2005) In: Solid State Electrochemistry—Proc. of the 26th Risø International Symposium on Material Science Roskilde Denmark:203

  20. Hauch A, Jensen SH, Mogensen M, Ramousse S (2006) J Electrochem Soc 153(9):A1741

    Article  CAS  Google Scholar 

  21. Hauch A, Jensen SH, Mogensen M, Bilde-Sørensen JB (2007) J Electrochem Soc 154(7):A619

    Article  CAS  Google Scholar 

  22. Hauch A, Ebbesen SD, Jensen SH, Mogensen M (2007) In: Risø International Energy Conference Roskilde Denmark:327

  23. Mogensen M, Jensen SH, Hauch A, Chorkendorff I, Jacobsen T (2007) In: Proc. 32nd International Cocoa Beach Conference on Advanced Ceramics and Composites, The American Ceramic Society

  24. Henne RH, Franco T, Ruckdäschel R (2006) J Therm Spray Technol 15(4):695

    Article  CAS  Google Scholar 

  25. Franco T, HoshiarDin Z, Szabo P, Lang M, Schiller G (2007) J Fuel Cell Sci Tech 4(4):406

    Article  CAS  Google Scholar 

  26. Franco T, Schibinger K, Ilhan Z, Schiller G, Venskutonis A (2007) In: Proc. 10th International Symposium on Solid Oxide Fuel Cells (SOFC-X) Nara Japan 3–8 June 2007 electronic paper

  27. Syed AA, Ilhan Z, Arnold J, Schiller G, Weckmann H (2006) J Therm Spray Technol 15(4):617

    Article  CAS  Google Scholar 

  28. Ansar SA, Ilhan Z, Richter W (2007) High Temp Mater Process 11(1):83

    Article  CAS  Google Scholar 

  29. Ansar SA, Ilhan Z (2007) In: MRS Spring Meeting San Francisco USA electronic paper

Download references

Acknowledgement

Financial support from the European Commission under the project no. FP6-503765 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiller, G., Ansar, A., Lang, M. et al. High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC). J Appl Electrochem 39, 293–301 (2009). https://doi.org/10.1007/s10800-008-9672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9672-6

Keywords

Navigation