[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Apixaban exhibits anti-arthritic effects by inhibiting activated factor X-mediated JAK2/STAT3 and MAPK phosphorylation pathways

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Activated factor X (FXa) is strongly linked to various inflammatory events. This study aimed to investigate the effect of FXa on janus kinase2/signal transducers and activators of transcription3 (JAK2/STAT3) and mitogen-activated protein kinase (MAPK) phosphorylation in relation to rheumatoid arthritis (RA). It also extends its scope to explore the possible anti-arthritic effects of apixaban, a selective FXa inhibitor. Rats were allocated into normal control; complete Freund's adjuvant (CFA, 0.4 ml/4 days/12 days); FXa (120 µg/kg/day/3 days) and CFA + FXa groups as well as three treated groups including CFA + apixaban; FXa + apixaban and CFA + FXa + apixaban. Apixaban was administered at a dose of 10 mg/kg/12 h for15 days. By the end of the experimental period, tissue samples were collected for the assessment of phosphorylated (p)-JAK2, STAT3, MAPK, matrixmetalloprotein-1 (MMP-1) and protease-activated receptor 2. Furthermore, Serum interleukin-6 (IL-6), platelet-derived growth factor (PDGF), anti-citrullinated protein antibody (ACPA), 8-hydroxy-2′-deoxyguanosine (8-OHdG), plasma level of FXa and prothrombin time were evaluated. In support, histopathological and macroscopical examinations were performed. FXa activated JAK2, STAT3 and MAPK phosphorylation through activation of PAR 2, PDGF and IL-6 and concomitantly led to a significant elevation in ACPA, MMP-1 and 8-OHdG. Apixaban markedly amended FXa-induced changes. Conclusively, the current study revealed that FXa may have a drastic role in RA progression and pathogenesis at least through stimulation of JAK2/STAT3 and MAPK phosphorylation. Furthermore, apixaban exerted robust arthro-protective effects. These beneficial outcomes could be attributed to its ability to impede JAK2/STAT3 and MAPK activation, as well as to its antioxidant property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are grateful to Histopathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Egypt for the histopathological examination. We are also thankful to Dr/Leila A. Dashed, Medical Biochemistry, Molecular Biology and Tissue Engineering Unit, School of Medicine, Cairo University for performing the Western Blot analysis.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omnia Ahmed Mohamed Abd El-Ghafar or Amira M. Abo-Youssef.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ghafar, O.A.M.A., Helal, G.K. & Abo-Youssef, A.M. Apixaban exhibits anti-arthritic effects by inhibiting activated factor X-mediated JAK2/STAT3 and MAPK phosphorylation pathways. Inflammopharmacol 28, 1253–1267 (2020). https://doi.org/10.1007/s10787-020-00693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-020-00693-8

Keywords

Navigation