[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Thermal Teleportation of Accelerated Information Via XXX Two-Qubit Heisenberg Chain in the Presence of an Asymmetric External Magnetic Field with Long-Range Interaction

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this investigation, thermal teleportation of an accelerated entangled state by an XXX two-qubit Heisenberg chain as a quantum channel is studied. We suppose the quantum channel in the presence of a non-uniform external magnetic field and with a long-range interaction. In order to investigate the quality of the quantum teleportation, trace distance of the input and output states is studied. It is observed that for small values of the magnetic field and spin distance, even though the entanglement of the input and output states is a decreasing function of the acceleration parameter, but the trace distance of these states remains zero independent of the acceleration parameter. Moreover, at a constant temperature, for both inertial and non-inertial observers, if the external magnetic field and spin distance are less than a critical value, they have no effect on the entanglement of the output state, but if they reach a critical value, the entanglement teleportation becomes zero and causes the loss of teleportation. In addition, these critical values ​​become smaller with the increase of the temperature. Furthermore, the asymmetry of the magnetic field can cause the appearance of the entanglement in the output state of a ferromagnetic channel. Also, if the distance between the spins is small, increasing temperature has no effect on the entanglement and the teleportation quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No data associated in the manuscript.

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wotters, W.K.: Phys. Rev. Lett. 70, 1895–1899 (1993)

  2. Bouwmeester, D., Pan, J., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Nature. 390, 575–579 (1998)

    Article  ADS  Google Scholar 

  3. Marcikic, I., Riedmatten, H., Tittel, W., Zbinden, H., Gisin, N.: Nature. 421, 509–513 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., Jost, J.D., et al.: Nature. 429, 737–739 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Zhou, Y., Zhang, G.-F.: Eur. Phys. J. D. 47, 227–231 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Riebe, M., Chwalla, M., Benhelm, J., Haffner, H., Hansel, W., Roos, C.F., Blatt, R.: New J. Phys. 9, 211 (2007)

    Article  ADS  Google Scholar 

  7. Zhang, G.F.: Phys. Rev. A. 75, 034304 (2007)

    Article  ADS  Google Scholar 

  8. Guo, J.L., Song, H.S.: Phys. Scr. 78, 2055 (2008)

    Google Scholar 

  9. Xu, X., Wang, X.: Int. J. Theor. Phys. 55, 3551–3554 (2016)

    Article  Google Scholar 

  10. Bose, S.: Contemp. Phys. 48, 13–30 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Fortes, R., Regolin, G.: Phys. Rev. A. 96, 022315 (2017)

    Article  ADS  Google Scholar 

  12. Mirmasoudi, F., Ahadpour, S.: J. Mod. Opt. 65, 730–736 (2018)

  13. Naji, A., Hamzehofi, R., Afshar, D.: Iran. J. Phys. Res. 19, 656–656 (2019)

    Google Scholar 

  14. Abd-Rabboul, M.Y., Khalil, E.M., Abdel-Khalek, S., Al-Barakaty, A., Abu-Zinadah, H., et al.: IEEE. 9, 51325–51331 (2021)

    Google Scholar 

  15. Omri, M., Abd-Rabbou, M.Y., Khalil, E.M., Abdel-Khalek, S.: Alex. Eng. J. 61, 8335–8342 (2022)

    Article  Google Scholar 

  16. Khalil, E.M., Abd-Rabbou, M.Y.: Optik. 267, 169703 (2022)

    Article  ADS  Google Scholar 

  17. Hwang, M.R., Park, D., Jung, E.: Phys. Rev. A. 83, 012111 (2011)

  18. Fuentes-Schuller, I., Mann, R.B.: Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  19. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Phys. Rev. A. 74, 032326 (2006)

    Article  ADS  Google Scholar 

  20. Mann, R.B., Fuentes, I.: Phys. Essays. 1, 226 (2008)

    Google Scholar 

  21. Wang, J., Jing, J.: Phys. Rev. A. 83, 022314 (2011)

    Article  ADS  Google Scholar 

  22. Dehnaviab, H.M., Mirza, B., Mohammadzadeh, H., Rahimi, R.: Ann. Phys. 326, 1320–1333 (2011)

    Article  ADS  Google Scholar 

  23. Shamirzaie, M., Esfahani, B.N., Soltani, M.: Int. J. Theor. Phys. 51, 787–804 (2012)

    Article  Google Scholar 

  24. Zhang, W., Deng, J., Jing, J.: J. Quantum Inf. Sci. 2, 23–27 (2012)

    Article  Google Scholar 

  25. Dai, Y., Shen, Z., Shi, Y.: J. High Energy Phys. 2015 (2015)

  26. Sun, W.Y., Wang, D., Yang, J., Ye, L.: Quantum Inf. Process. 16, 90 (2017)

    Article  ADS  Google Scholar 

  27. Esmaeilifar, L., Harsij, Z., Mirza, B.: Int. J. Theor. Phys. 58, 4152–4169 (2019)

    Article  CAS  Google Scholar 

  28. Torres-Arenasa, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Phys. Lett. B. 789, 93–105 (2019)

    Article  ADS  Google Scholar 

  29. Kim, K.L., Pak, M.C., Kim, T.H.: Eur. Phys. J. D. 74, 124 (2020)

    Article  ADS  CAS  Google Scholar 

  30. Unruh, W.G.: Phys. Rev. D. 14, 870–892 (1976)

    Article  ADS  CAS  Google Scholar 

  31. Davies, P.C.W.: J. Phys. A Math. Gen. 8, 609–616 (1975)

    Article  ADS  Google Scholar 

  32. Metwally, N.: J. Opt. Soc. Am. B. 30, 233–237 (2013)

  33. Xiang, M., Jing, J.: J. Quantum Inf. Sci. 2, 103–111 (2012)

  34. Chen, X., Chan, K.W.C.: Phys. Rev. A. 99, 022334 (2019)

  35. Jin, Y.: Adv. Theor. Simul. 2, 1900002 (2019)

    Article  Google Scholar 

  36. Mirzaei, S., Akbarieh, A.R.: Int. J. Theor. Phys. 59, 3583–3592 (2020)

    Article  Google Scholar 

  37. Alsing, P.M., McMahon, D., Milburn, G.J.: J. Opt. B: Quant. Semiclass. Opt. 6, 834–845 (2004)

    Article  ADS  Google Scholar 

  38. Bonechi, F., Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: J. Phys. A Math. Gen. 25, 939–943 (1992)

    Article  ADS  Google Scholar 

  39. Niccoli, G., Pei, H., Terras, V.: SciPost. Phys. 10, 006 (2021)

    Article  ADS  Google Scholar 

  40. Zhou, Y., Zhang, G.-F.: Eur. Phys. J. D. 47, 227–231 (2008)

    Article  ADS  CAS  Google Scholar 

  41. Han, S.D., Tufekci, T., Spiller, T.P., Aydiner, E.: Int. J. Theor. Phys. 56, 1474–1483 (2017)

    Article  CAS  Google Scholar 

  42. Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Phys. Rev. A. 98, 022320 (2018)

    Article  ADS  CAS  Google Scholar 

  43. Peres, A.: Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  44. Wootters, W.K.: Phys. Rev. Lett. 80, 2245–2248 (1997)

    Article  ADS  Google Scholar 

  45. Kamta, G.L., Starace, A.F.: Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  46. Barnett, S.M.: Quantum Information. Oxford University Press (2009)

    Book  Google Scholar 

  47. Mo, C., Zhang, G.F.: Results Phys. 21, 103759 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by Shahid Chamran University of Ahvaz, Grant Numbers SCU.SP1402.812 and SCU.SP1402.479.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission

1. made substantial contributions to the conception, and interpretation of the results2. approved the version to be submitted3. agreed to be accountable for all aspects of the work in ensuring that  the accuracy  of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to D. Afshar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzehofi, R., Afshar, D. & Ashrafpour, M. Thermal Teleportation of Accelerated Information Via XXX Two-Qubit Heisenberg Chain in the Presence of an Asymmetric External Magnetic Field with Long-Range Interaction. Int J Theor Phys 63, 47 (2024). https://doi.org/10.1007/s10773-024-05563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05563-5

Keywords