Abstract
In this investigation, thermal teleportation of an accelerated entangled state by an XXX two-qubit Heisenberg chain as a quantum channel is studied. We suppose the quantum channel in the presence of a non-uniform external magnetic field and with a long-range interaction. In order to investigate the quality of the quantum teleportation, trace distance of the input and output states is studied. It is observed that for small values of the magnetic field and spin distance, even though the entanglement of the input and output states is a decreasing function of the acceleration parameter, but the trace distance of these states remains zero independent of the acceleration parameter. Moreover, at a constant temperature, for both inertial and non-inertial observers, if the external magnetic field and spin distance are less than a critical value, they have no effect on the entanglement of the output state, but if they reach a critical value, the entanglement teleportation becomes zero and causes the loss of teleportation. In addition, these critical values become smaller with the increase of the temperature. Furthermore, the asymmetry of the magnetic field can cause the appearance of the entanglement in the output state of a ferromagnetic channel. Also, if the distance between the spins is small, increasing temperature has no effect on the entanglement and the teleportation quality.







Similar content being viewed by others
Data Availability
No data associated in the manuscript.
References
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wotters, W.K.: Phys. Rev. Lett. 70, 1895–1899 (1993)
Bouwmeester, D., Pan, J., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Nature. 390, 575–579 (1998)
Marcikic, I., Riedmatten, H., Tittel, W., Zbinden, H., Gisin, N.: Nature. 421, 509–513 (2003)
Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., Jost, J.D., et al.: Nature. 429, 737–739 (2004)
Zhou, Y., Zhang, G.-F.: Eur. Phys. J. D. 47, 227–231 (2008)
Riebe, M., Chwalla, M., Benhelm, J., Haffner, H., Hansel, W., Roos, C.F., Blatt, R.: New J. Phys. 9, 211 (2007)
Zhang, G.F.: Phys. Rev. A. 75, 034304 (2007)
Guo, J.L., Song, H.S.: Phys. Scr. 78, 2055 (2008)
Xu, X., Wang, X.: Int. J. Theor. Phys. 55, 3551–3554 (2016)
Bose, S.: Contemp. Phys. 48, 13–30 (2007)
Fortes, R., Regolin, G.: Phys. Rev. A. 96, 022315 (2017)
Mirmasoudi, F., Ahadpour, S.: J. Mod. Opt. 65, 730–736 (2018)
Naji, A., Hamzehofi, R., Afshar, D.: Iran. J. Phys. Res. 19, 656–656 (2019)
Abd-Rabboul, M.Y., Khalil, E.M., Abdel-Khalek, S., Al-Barakaty, A., Abu-Zinadah, H., et al.: IEEE. 9, 51325–51331 (2021)
Omri, M., Abd-Rabbou, M.Y., Khalil, E.M., Abdel-Khalek, S.: Alex. Eng. J. 61, 8335–8342 (2022)
Khalil, E.M., Abd-Rabbou, M.Y.: Optik. 267, 169703 (2022)
Hwang, M.R., Park, D., Jung, E.: Phys. Rev. A. 83, 012111 (2011)
Fuentes-Schuller, I., Mann, R.B.: Phys. Rev. Lett. 95, 120404 (2005)
Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Phys. Rev. A. 74, 032326 (2006)
Mann, R.B., Fuentes, I.: Phys. Essays. 1, 226 (2008)
Wang, J., Jing, J.: Phys. Rev. A. 83, 022314 (2011)
Dehnaviab, H.M., Mirza, B., Mohammadzadeh, H., Rahimi, R.: Ann. Phys. 326, 1320–1333 (2011)
Shamirzaie, M., Esfahani, B.N., Soltani, M.: Int. J. Theor. Phys. 51, 787–804 (2012)
Zhang, W., Deng, J., Jing, J.: J. Quantum Inf. Sci. 2, 23–27 (2012)
Dai, Y., Shen, Z., Shi, Y.: J. High Energy Phys. 2015 (2015)
Sun, W.Y., Wang, D., Yang, J., Ye, L.: Quantum Inf. Process. 16, 90 (2017)
Esmaeilifar, L., Harsij, Z., Mirza, B.: Int. J. Theor. Phys. 58, 4152–4169 (2019)
Torres-Arenasa, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Phys. Lett. B. 789, 93–105 (2019)
Kim, K.L., Pak, M.C., Kim, T.H.: Eur. Phys. J. D. 74, 124 (2020)
Unruh, W.G.: Phys. Rev. D. 14, 870–892 (1976)
Davies, P.C.W.: J. Phys. A Math. Gen. 8, 609–616 (1975)
Metwally, N.: J. Opt. Soc. Am. B. 30, 233–237 (2013)
Xiang, M., Jing, J.: J. Quantum Inf. Sci. 2, 103–111 (2012)
Chen, X., Chan, K.W.C.: Phys. Rev. A. 99, 022334 (2019)
Jin, Y.: Adv. Theor. Simul. 2, 1900002 (2019)
Mirzaei, S., Akbarieh, A.R.: Int. J. Theor. Phys. 59, 3583–3592 (2020)
Alsing, P.M., McMahon, D., Milburn, G.J.: J. Opt. B: Quant. Semiclass. Opt. 6, 834–845 (2004)
Bonechi, F., Celeghini, E., Giachetti, R., Sorace, E., Tarlini, M.: J. Phys. A Math. Gen. 25, 939–943 (1992)
Niccoli, G., Pei, H., Terras, V.: SciPost. Phys. 10, 006 (2021)
Zhou, Y., Zhang, G.-F.: Eur. Phys. J. D. 47, 227–231 (2008)
Han, S.D., Tufekci, T., Spiller, T.P., Aydiner, E.: Int. J. Theor. Phys. 56, 1474–1483 (2017)
Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Phys. Rev. A. 98, 022320 (2018)
Peres, A.: Phys. Rev. Lett. 77, 1413–1415 (1996)
Wootters, W.K.: Phys. Rev. Lett. 80, 2245–2248 (1997)
Kamta, G.L., Starace, A.F.: Phys. Rev. Lett. 88, 107901 (2002)
Barnett, S.M.: Quantum Information. Oxford University Press (2009)
Mo, C., Zhang, G.F.: Results Phys. 21, 103759 (2021)
Acknowledgments
The authors acknowledge the financial support by Shahid Chamran University of Ahvaz, Grant Numbers SCU.SP1402.812 and SCU.SP1402.479.
Author information
Authors and Affiliations
Contributions
All authors whose names appear on the submission
1. made substantial contributions to the conception, and interpretation of the results2. approved the version to be submitted3. agreed to be accountable for all aspects of the work in ensuring that the accuracy of any part of the work are appropriately investigated and resolved.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hamzehofi, R., Afshar, D. & Ashrafpour, M. Thermal Teleportation of Accelerated Information Via XXX Two-Qubit Heisenberg Chain in the Presence of an Asymmetric External Magnetic Field with Long-Range Interaction. Int J Theor Phys 63, 47 (2024). https://doi.org/10.1007/s10773-024-05563-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10773-024-05563-5