[go: up one dir, main page]

Skip to main content
Log in

A new dual subband fast NLMS adaptive filtering algorithm for blind speech quality enhancement and acoustic noise reduction

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

This paper discusses the problem of acoustic noise reduction and speech enhancement through the forward blind source separation structure. Recently we have proposed a new combination between the forward blind source separation structure and the fast normalized least mean square algorithm that provides an efficient dual algorithm for noise reduction and speech enhancement applications. In this paper we propose a new subband implementation of this recent dual algorithm, this last allows improving the speed convergence behavior of the previous proposed algorithm in its fullband form. The performance of the proposed dual subband algorithm is compared with its fullband version of the dual fast normalized least mean square algorithm and the classical fullband dual normalized least mean square algorithm, and the two channel subband forward algorithm in terms of several objective criteria. The obtained results show the good performances of the proposed dual subband algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Barysenkaa, S. Y., Vorobiova, V. I., & Mowlaee, P. (2018). Single-channel speech enhancement using inter-component phase relations. Speech Communication, 99, 144–160.

    Article  Google Scholar 

  • Benallal, A., & Arezki, M. (2013). A fast convergence normalized least-mean-square type algorithm for adaptive filtering. International Journal of Adaptive Control and Signal Processing, 28(10), 1073–1080.

    MathSciNet  Google Scholar 

  • Benallal, A., & Benkrid, A. (2007). A simplified FTF-type algorithm for adaptive filtering. Signal Processing, 87(5), 904–917.

    Article  MATH  Google Scholar 

  • Bouchard, M. (2003). Multichannel affine and fast affine projection algorithms for active noise control and acoustic equalization systems. IEEE Transactions on Speech and Audio Processing, 11(1), 54–60.

    Article  Google Scholar 

  • Darazirar, I., & Djendi, M. (2015). A two-sensor Gauss-Seidel fast affine projection algorithm for speech enhancement and acoustic noise reduction. Applied Acoustics, 96, 39–52.

    Article  Google Scholar 

  • Djendi, M. (2010). Advanced techniques for two-microphone noise reduction in mobile communications (Ph.D. dissertation), University of Rennes, France (in French).

  • Djendi, M., & Bendoumia, R. (2013). A new adaptive filtering subband algorithm for two channel acoustic noise reduction and speech enhancement. Computers & Electrical Engineering, 39(8), 2531–2550.

    Article  Google Scholar 

  • Djendi, M., Gilloire, A., & Scalart, P. (2007) New frequency domain post-filters for noise cancellation using two closely spaced microphones. Proceedings of EUSIPCO, Poznan, 1, 218–221.

    Google Scholar 

  • Djendi, M., Scalart, P., & Gilloire, A. (2006). Noise cancellation using two closely spaced microphones: Experimental study with a specific model and two adaptive algorithms. IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, 3, 744–747.

    Google Scholar 

  • Gabrea, M. (2003). Double affine projection algorithm-based speech enhancement algorithm. In IEEE International Conference on Acoustics, Speech, and Signal Processing, Montréal, vol. 2, pp. 904–907.

  • Gabrea, M., Mandridake, E., Menez, M., & Vallauri, A. (1996). Two microphones speech enhancement system based on a double fast recursive least squares (DFRLS) algorithm. 8th European Signal Processing Conference, IEEE.

  • Ghribi, K., Djendi, M., & Berkani, D. (2016). A New wavelet-based forward BSS algorithm for acoustic noise reduction and speech quality enhancement. Applied Acoustics, 105, 55–66.

    Article  Google Scholar 

  • Henni, R., Djendi, M., & Djebari, M. (2019). A new efficient two-channel fast transversal adaptive filtering algorithm for blind speech enhancement and acoustic noise reduction. Computer and Electrical Engineering, 73, 349–368.

    Article  Google Scholar 

  • Hu, Y., & Loizou, P. C. (2008). Evaluation of objective quality measures for speech enhancement. IEEE Transactions on Audio, Speech and Language Processing, 16(1), 229–238.

    Article  Google Scholar 

  • Kim, G., Yoo, C. D., & Nguyen, T. Q. (2008). Alia-free subband adaptive filtering with critical sampling. IEEE Transactions on Signal Processing, 56(5), 1894–1904.

    MathSciNet  Google Scholar 

  • Kocinski, J. (2008). Speech intelligibility improvement using convolutive blind source separation assisted by denoising algorithms. Speech Communication, 50(1), 29–37.

    Article  Google Scholar 

  • Kokkinakis, K., & Loizou, P. C. (2007). Subband-based blind signal processing for source separation in convolutive mixtures of speech. IEEE Transactions on Acoustics Speech and Signal Processing, 4, 917–920.

    Google Scholar 

  • Lee, K. A., & Gan, W. S. (2004). Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Processing Letters, 11(9), 736–739

    Article  Google Scholar 

  • Lee, K. A., Gan, W. S., Kuo, S. M. (2010). Subband adaptive filtering theory and implementation. Chichester: Wiley.

    Google Scholar 

  • Lee, S., Han, D. K., & Ko, H. (2017). Single-channel speech enhancement method using reconstructive NMF with spectrotemporal speech presence probabilities. Applied Acoustics, 117(B), 257–262.

    Article  Google Scholar 

  • Meyer, J., Simmer, K. U. (1997). Multi-channel speech enhancement in a car environment using Wiener filtering and spectral subtraction. IEEE International Conference on Acoustics, Speech, and Signal Processing.

  • Milani, A. A., & Panahi, I. M. S., Loizou, P. C. (2009). A new delayless subband adaptive filtering algorithm for active noise control systems. IEEE Transactions on Audio, Speech, and Language Processing, 17(5), 1038–1045.

    Article  Google Scholar 

  • Nabi, W., Aloui, N., & Cherif, A. (2016). Speech enhancement in dual-microphone mobile phones using Kalman filter. Applied Acoustics, 109, 1–4.

    Article  Google Scholar 

  • Nabi, W., Aloui, N., & Cherif, A. (2017). An improved speech enhancement algorithm for dual-channel mobile phones using wavelet and genetic algorithm. Computers and Electrical Engineering, 000, 1–14.

    Google Scholar 

  • Rabiner, L., B.H. Juang (1993). Fundamentals of speech recognition. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Reza Abutalebi, H., Sheikhzadeh, H., Brennan, R. L., & Freeman, G. H. (2004). A hybrid subband adaptive system for speech enhancement in diffuse noise fields. IEEE Signal Processing Letters, 11(1), 44–47.

    Google Scholar 

  • Sayoud, A., Djendi, M., Medahi, S., & Guessoum, A. (2018). A dual fast NLMS adaptive filtering algorithm for blind speech quality enhancement. Applied Acoustics, 135, 101–110.

    Article  Google Scholar 

  • Syskind Pedersen, M., Larsen, J., Kjems, U., & Parra, L. C. (2007). A survey of convolutive blind source separation methods. Springer Handbook on Speech Processing and Speech Communication.

  • Syskind Pedersen, M., Wang, D., Larsen, J., Kjems, U. (2008). Two-microphone separation of speech mixtures. IEEE Transaction on Neural Networks (In Press).

  • Upadhyay, N., Jaiswal, R. K. (2016) Single channel speech enhancement: using Weiner filtering recursive noise estimation. Procedia Computer Science, 84, 22–30.

    Article  Google Scholar 

  • Van Gerven, S., Van Compernolle, D. (1992). Feedforward and Feedback in a symmetric adaptive noise canceller: Stability analysis in a simplified case. Proceedings of the IEEE EUSIPCO, Belgium, Brussels, 1, 1081–1084.

    Google Scholar 

  • Weinstein, E., Feder, M., & Oppenheim, A. V. (1993). Multi-channel signal separation by decorrelation. IEEE Transactions on Speech and Audio Processing, 1(4), 405–413.

    Article  Google Scholar 

  • Yang, F., Wu, M., Ji, P., Yang, J. (2012). An improved multiband-structured subband adaptive filter algorithm. IEEE, Signal Processing Letters, 19(10), 647–650.

    Article  Google Scholar 

  • Zoulikha, M., Djendi, M. (2016). A new regularized forward blind source separation algorithm for automatic speech quality enhancement. Applied Acoustics, 112, 192–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Djendi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djendi, M., Sayoud, A. A new dual subband fast NLMS adaptive filtering algorithm for blind speech quality enhancement and acoustic noise reduction. Int J Speech Technol 22, 391–406 (2019). https://doi.org/10.1007/s10772-019-09614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-019-09614-9

Keywords

Navigation