[go: up one dir, main page]

Skip to main content
Log in

The Effects of Dexamethasone and L-NAME on Acute Lung Injury in Rats with Lung Contusion

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The therapeutic efficiency of an anti-inflammatory agent, dexamethasone (DXM), and a nitric oxide synthase (NOS) inhibitor, Nitro-L-arginine methyl ester (L-NAME), in lung tissue injury after lung contusion was investigated. Serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), YKL-40, an inflammatory peptide, inducible NOS (iNOS), and Clara cell protein 16 (CC-16) were evaluated. Immunohistochemical analyses were also performed, and the lung tissue was examined histopathologically. The study consisted of eight groups of Sprague-Dawley rats (n = 10 in each group), weighing 250–300 g: (1) control, (2) contusion, (3) control + DXM, (4) contusion + DXM, (5) control + L-NAME (6) contusion + L-NAME, (7) control + DXM + L-NAME, and (8) contusion + DXM + L-NAME. A previously developed lung contusion model was used, in addition to the control group. The rats were administered DXM and L-NAME intraperitoneally (i.p.) at doses of 15 and 60 mg/kg/day, respectively. DXM and L-NAME administration decreased the iNOS level in the contusion groups. DXM increased the levels of YKL-40 and IL-10 in both the control and contusion groups, with higher levels in the contusion groups. L-NAME increased the serum level of IL-10 in the lung contusion groups. DXM increased the synthesis of CC-16 in the control and contusion groups. The combined use of a high-dose steroid and NOS inhibitor resulted in the death of the rats. Steroids can increase the level of cytokines, such as YKL-40 and IL-10, and the synthesis of CC-16 and prevent pneumonia, ALI/ARDS, and sepsis in lung contusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cohn, S.M. 1997. Pulmonary contusion: review of the clinical entity. Journal of Trauma-Injury Infection and Critical Care 42: 973–979. doi:10.1097/00005373-199705000-00033.

    Article  CAS  Google Scholar 

  2. Miller, D.L., and K.A. Mansour. 2007. Blunt traumatic lung injuries. Thoracic Surgery Clinics 17(57-61): vi. doi:10.1016/j.thorsurg.2007.03.017.

    Google Scholar 

  3. Cohn, S.M., and J.J. DuBose. 2010. Pulmonary contusion: an update on recent advances in clinical management. World Journal of Surgery 34: 1959–1970. doi:10.1007/s00268-010-0599-9.

    Article  PubMed  Google Scholar 

  4. Mark, K.S., W.J. Trickler, and D.W. Miller. 2001. Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. Journal of Pharmacology and Experimental Therapeutics 297: 1051–1058.

    CAS  PubMed  Google Scholar 

  5. Zelova, H., and J. Hosek. 2013. TNF-alpha signalling and inflammation: interactions between old acquaintances. Inflammation Research 62: 641–651. doi:10.1007/s00011-013-0633-0.

    Article  CAS  PubMed  Google Scholar 

  6. Sanders, D.B., D.F. Larson, K. Hunter, M. Gorman, and B. Yang. 2001. Comparison of tumor necrosis factor-alpha effect on the expression of iNOS in macrophage and cardiac myocytes. Perfusion 16: 67–74.

    Article  CAS  PubMed  Google Scholar 

  7. Fiorentino, D.F., A. Zlotnik, T.R. Mosmann, M. Howard, and A. Ogarra. 1991. IL-10 ınhibits cytokine production by activated macrophages. Journal of Immunology 147: 3815–3822.

    CAS  Google Scholar 

  8. Kasama, T., R.M. Strieter, N.W. Lukacs, M.D. Burdick, and S.L. Kunkel. 1994. Regulation of neutrophil-derived chemokine expression by IL-10. Journal of Immunology 152: 3559–3569.

    CAS  Google Scholar 

  9. Kzhyshkowska, J., A. Gratchev, and S. Goerdt. 2007. Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomarker Insights 2: 128–146.

    PubMed  PubMed Central  Google Scholar 

  10. Letuve, S., A. Kozhich, N. Arouche, M. Grandsaigne, J. Reed, M.-C. Dombret, P.A. Kiener, M. Aubier, A.J. Coyle, and M. Pretolani. 2008. YKL-40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macrophages. Journal of Immunology 181: 5167–5173.

    Article  CAS  Google Scholar 

  11. Park, J.-A., J.M. Drazen, and D.J. Tschumperlin. 2010. The chitinase-like protein YKL-40 ıs secreted by airway epithelial cells at base line and in response to compressive mechanical stress. Journal of Biological Chemistry 285: 29817–29825. doi:10.1074/jbc.M110.103416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lakshminrusimha, S., M.V. Suresh, P.R. Knight, S.F. Gugino, B.A. Davidson, J.D. Helinski, L.C. Nielsen, et al. 2013. Role of pulmonary artery reactivity and nitric oxide in ınjury and ınflammation following lung Contusion. Shock 39: 278–285. doi:10.1097/SHK.0b013e318281d6ed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vallance, P., and J. Leiper. 2002. Blocking NO synthesis: how, where and why? Nature Reviews Drug Discovery 1: 939–950. doi:10.1038/nrd960.

    Article  CAS  PubMed  Google Scholar 

  14. Shibata, T., K. Nagata, and Y. Kobayashi. 2006. Pivotal advance: a suppressive role of nitric oxide in MIP-2 production by macrophages upon coculturing with apoptotic cells. Journal of Leukocyte Biology 80: 744–752. doi:10.1189/jlb.0106012.

    Article  CAS  PubMed  Google Scholar 

  15. Li, X.Y., K. Donaldson, and W. MacNee. 1998. Lipopolysaccharide-induced alveolar epithelial permeability—the role of nitric oxide. American Journal of Respiratory and Critical Care Medicine 157: 1027–1033.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, D., J. Wei, K. Hsu, J.C. Jau, M.W. Lieu, T.J. Chao, and H.I. Chen. 1999. Effects of nitric oxide synthase inhibitors on systemic hypotension, cytokines and inducible nitric oxide synthase expression and lung injury following endotoxin administration in rats. Journal of Biomedical Science 6: 28–35. doi:10.1007/bf02256421.

    Article  PubMed  Google Scholar 

  17. Hermans, C., and A. Bernard. 1999. Lung epithelium-specific proteins—characteristics and potential applications as markers. American Journal of Respiratory and Critical Care Medicine 159: 646–678.

    Article  CAS  PubMed  Google Scholar 

  18. Wong, A.P., A. Keating, and T.K. Waddell. 2009. Airway regeneration: the role of the Clara cell secretory protein and the cells that express it. Cytotherapy 11: 676–687. doi:10.3109/14653240903313974.

    Article  CAS  PubMed  Google Scholar 

  19. Alaçam, H., R. Karli, O. Alici, B. Avci, A. Güzel, A. Kozan, C. Mertoglu, et al. 2013. The effects of α-tocopherol on oxidative damage and serum levels of Clara cell protein 16 in aspiration pneumonitis induced by bile acids. Human and Experimental Toxicology 32: 53–61.

    Article  PubMed  Google Scholar 

  20. Reynolds, S.D., A. Giangreco, K.U. Hong, K.E. McGrath, L.A. Ortiz, and B.R. Stripp. 2004. Airway injury in lung disease pathophysiology: selective depletion of airway stem and progenitor cell pools potentiates lung inflammation and alveolar dysfunction. American Journal of Physiology—Lung Cellular and Molecular Physiology 287: L1256–L1265. doi:10.1152/ajplung.00203.2004.

    Article  CAS  PubMed  Google Scholar 

  21. Raghavendran, K., B.A. Davidson, J.A. Woytash, J.D. Helinski, C.J. Marschke, P.A. Manderscheid, R.H. Notter, and P.R. Knight. 2005. The evolution of isolated bilateral lung contusion from blunt chest trauma in rats: Cellular and cytokine responses. Shock 24: 132–138. doi:10.1097/01.shk.0000169725.80068.4a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ekerbicer, N., S. Inan, F. Tarakci, T. Barut, T. Gürpınar, and M. Ozbek. 2012. Effects of acute treatment with dexamethasone on hemodynamic and histopathological changes in rats. Biotechnic & Histochemistry 87(6): 385–396. doi:10.3109/10520295.2012.672651.

    Article  CAS  Google Scholar 

  23. Souza, H.C., G. Ballejo, M.C. Salgado, V.J. Da Silva, and H.C. Salgado. 2001. Cardiac sympathetic overactivity and decreased baroreflex sensitivity in L-NAME hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology 280(2): H844–H850.

    CAS  PubMed  Google Scholar 

  24. Takıl, A., T. Umuroglu, F.G. Yılmaz, Z. Etı, B. Yildizeli, and R. Ahiskali. 2003. Histopathologic effects of lipid content of enteral solutions after pulmonary aspiration in Rats. Nutrition 19: 666–669.

    Article  PubMed  Google Scholar 

  25. Raghavendran, K., R.H. Notter, B.A. Davidson, J.D. Helinski, S.L. Kunkel, and P.R. Knight. 2009. Lung contusion: ınflammatory mechanisms and ınteraction with other ınjuries. Shock 32: 122–130. doi:10.1097/SHK.0b013e31819c385c.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Perl, M., F. Gebhard, U.B. Bruckner, A. Ayala, S. Braumuller, C. Buttner, L. Kinzl, and M.W. Knoferl. 2005. Pulmonary contusion causes impairment of macrophage and lymphocyte immune functions and increases mortality associated with a subsequent septic challenge. Critical Care Medicine 33: 1351–1358. doi:10.1097/01.ccm.0000166352.28018.a9.

    Article  PubMed  Google Scholar 

  27. Singh, P., A. Castillo, and D.S. Majid. 2014. Decrease in IL-10 and increase in TNF-α levels in renal tissues during systemic inhibition of nitric oxide in anesthetized mice. Physiology Reports 2(2), e00228. doi:10.1002/phy2.228.

    Article  Google Scholar 

  28. Miguel-Carrasco, J.L., A. Mate, M.T. Monserrat, J.L. Arias, O. Aramburu, and C.M. Vazquez. 2008. The role of ınflammatory markers in the cardioprotective effect of L-Carnitine in L-NAME-ınduced hypertension. American Journal of Hypertension 21: 1231–1237. doi:10.1038/ajh.2008.271.

    Article  CAS  PubMed  Google Scholar 

  29. Qiu, H.B., D.C. Chen, J.Q. Pan, D.W. Liu, and S. Ma. 1999. Inhibitory effects of nitric oxide and interleukin-10 on production of tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 in mouse alveolar macrophages. Acta Pharmacologica Sinica 20: 271–275.

    CAS  PubMed  Google Scholar 

  30. Clarkson, A.N., H. Liu, F. Schiborra, O. Shaw, I.A. Sammut, D.M. Jackson, and I. Appleton. 2007. Angiogenesis as a predictive marker of neurological outcome following hypoxia-ischemia. Brain Research 1171: 111–121. doi:10.1016/j.brainres.2007.06.100.

    Article  CAS  PubMed  Google Scholar 

  31. Helleday, R., B. Segerstedt, B. Forsberg, I. Mudway, G. Nordberg, A. Bernard, and A. Blomberg. 2006. Exploring the time dependence of serum Clara cell protein as a biomarker of pulmonary injury in humans. Chest 130: 672–675. doi:10.1378/chest.130.3.672.

    Article  PubMed  Google Scholar 

  32. Broeckaert, F., A. Clippe, B. Knoops, C. Hermans, and A. Bernard. 2000. Clara cell secretory protein (CC16): features as a peripheral lung biomarker. Uteroglobin/Clara Cell Protein Family 923: 68–77.

    CAS  Google Scholar 

  33. Kropski, J.A., R.D. Fremont, C.S. Calfee, and L.B. Ware. 2009. Clara cell protein (CC16), a marker of lung epithelial ınjury, ıs decreased in plasma and pulmonary edema fluid from patients with acute lung ınjury. Chest 135(6): 1440–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hagen, G., M. Wolf, S.L. Katyal, G. Singh, M. Beato, and G. Suske. 1990. Tissue-specific expression, hormonal-regulation and 5′-flanking gene region of the rat Clara cell-10kda protein—comparison to rabbit uteroglobin. Nucleic Acids Research 18: 2939–2946. doi:10.1093/nar/18.10.2939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He, C.H., C.G. Lee, C.S. Dela, C.-M.L. Cruz, Z. Yang, F. Ahangari, B. Ma, et al. 2013. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor α2. Cell Reports 4: 830–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ling, H., and A.D. Recklies. 2004. The chitinase 3-like protein human cartilage glycoprotein 39 inhibits cellular responses to the inflammatory cytokines interleukin-1 and tumour necrosis factor-alpha. Biochemical Journal 380: 651–659. doi:10.1042/bj20040099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seitz, D.H., M. Perl, S. Mangold, A. Neddermann, S.T. Braumueller, S. Zhou, M.G. Bachem, M.S. Huber-Lang, and M.W. Knoeferl. 2008. Pulmonary contusion ınduces alveolar type 2 epithelial cell apoptosis: role of alveolar macrophages and neutrophils. Shock 30: 537–544. doi:10.1097/SHK.0b013e31816a394b.

    Article  PubMed  Google Scholar 

  38. Sohn, M.H., M.J. Kang, H. Matsuura, V. Bhandari, N.Y. Chen, C.G. Lee, and J.A. Elias. 2010. The chitinase-like proteins breast regression protein-39 and YKL-40 regulate hyperoxia-induced acute lung injury. American Journal of Respiratory and Critical Care Medicine 182: 918–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lakshminrusimha, S., D. Wiseman, S.M. Black, J.A. Russell, S.F. Gugino, P. Oishi, R.H. Steinhorn, and J.R. Fineman. 2007. The role of nitric oxide synthase-derived reactive oxygen species in the altered relaxation of pulmonary arteries from lambs with increased pulmonary blood flow. American Journal of Physiology—Heart and Circulatory Physiology 293: H1491–H1497. doi:10.1152/ajpheart.00185.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Su, C.F., S.J. Kao, and H.I. Chen. 2012. Acute respiratory distress syndrome and lung injury: pathogenetic mechanism and therapeutic implication. World Journal Critical Care Medicine 1: 50–60. doi:10.5492/wjccm.v1.i2.50.

    Article  Google Scholar 

  41. Hsiao, Chien-Chou, Chien-Hsing Lee, Lon-Yen Tsao, and Hui-Chen Lo. 2012. The dose-dependent immunoregulatory effects of the nitric oxide synthase inhibitor N-G-nitro-L-arginine methyl ester in rats with sub-acute peritonitis. Plos One 7. doi:10.1371/journal.pone.0042467

  42. Qiu, C.B., and C. Baylis. 2000. Dexamethasone worsens nitric oxide inhibition-induced hypertension and renal dysfunction. American Journal of Hypertension 13: 1097–1102. doi:10.1016/s0895-7061(00)00292-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Santos, D., and C. Claudia. 2008. Advances in mechanisms of repair and remodelling in acute lung injury. Intensive Care Medicine 34: 619–630. doi:10.1007/s00134-007-0963-x.

    Article  PubMed  Google Scholar 

  44. Bhargava, M., and C.H. Wendt. 2012. Biomarkers in acute lung injury. Translational Research 159: 205–217. doi:10.1016/j.trsl.2012.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Turut, H., H. Ciralik, M. Kilinc, D. Ozbag, and S.S. Imrek. 2009. Effects of early administration of dexamethasone, N-acetylcysteine and aprotinin on inflammatory and oxidant-antioxidant status after lung contusion in rats. Injury-International Journal of the Care of the Injured 40: 521–527. doi:10.1016/j.injury.2008.05.001.

    Article  Google Scholar 

  46. Scrogin, K.E., D.C. Hatton, Y. Chi, and F.C. Luft. 1998. Chronic nitric oxide inhibition with L-NAME: effects on autonomic control of the cardiovascular system. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology 274: R367–R374.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Scientific and Technological Research Council of Turkey (project no. 114S008) project number. We thank the council for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Kozan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozan, A., Kilic, N., Alacam, H. et al. The Effects of Dexamethasone and L-NAME on Acute Lung Injury in Rats with Lung Contusion. Inflammation 39, 1747–1756 (2016). https://doi.org/10.1007/s10753-016-0409-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0409-0

KEY WORDS

Navigation