[go: up one dir, main page]

Skip to main content
Log in

Zooplankton hatching from dormant eggs in a large Pampean shallow lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dormancy is an essential component of the life cycle for populations that disappear from the plankton during winter. The hatching of resting eggs is the main mechanism for restoring active population components. Here, we analyzed the hatching dynamics of zooplankton from sediments of a shallow lake as affected by temperature. Sediment samples collected every other month were incubated at in situ temperatures and at 20°C. The highest number of individual's hatchings was observed for copepod nauplii, the cladoceran Bosmina sp., and the rotifer Brachionus havanaensis. Temperature showed a positive significant effect on the hatchlings of B. havanaensis. Other zooplankton species were less affected by temperature, and there was no relationship between their emergence from the incubated sediments and occurrence in the water column. We also tested the effect of short-term (6 and 12 weeks) and long-term (a year) storage duration on hatching success. The hatching success of B. havanaensis was not affected by the storage time. In contrast, the hatchlings of Bosmina sp. and nauplii increased after short storage time. The evidence collected here suggests that many zooplankters were not affected by temperature, while for B. havanaensis temperature turned out to be a master variable that links planktonic and passive phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Battauz, Y. S., S. B. J. de Paggi & J. C. Paggi, 2014. Passive zooplankton community in dry littoral sediment: reservoir of diversity and potential source of dispersal in a subtropical floodplain lake of the Middle Paraná River (Santa Fe, Argentina). International Review of Hydrobiology 99: 277–286.

    Google Scholar 

  • Becks, L. & A. F. Agrawal, 2012. The evolution of sex is favoured during adaptation to new environments. PLoS Biology 10(5): e1001317.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brendonck, L., 1996. Diapause, quiescence, hatching requirements: what we can learn from large freshwater branchiopods (Crustacea: Branchiopoda: Anostraca, Notostraca, Conchostraca). Hydrobiologia 320: 85–97.

    Google Scholar 

  • Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.

    Google Scholar 

  • Briski, E., S. A. Bailey & H. J. Macisaac, 2013. Separation strategies for invertebrate dormant stages contained in sediment. Aquatic Biology 18: 209–215.

    Google Scholar 

  • Broman, E., M. Brusin, M. Dopson & S. Hylander, 2015. Oxygenation of anoxic sediments triggers hatching of zooplankton eggs. Proceedings of the Royal Society B 282: 20152025.

    PubMed  Google Scholar 

  • Brooks, M. E., K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, H. J. Skaug, M. Maechler & B. M. Bolker, 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9(2): 378–400.

    Google Scholar 

  • Campillo, S., E. M. García-Roger, M. J. Carmona & M. Serra, 2011. Local adaptation in rotifer populations. Evolutionary Ecology 25: 933–947.

    Google Scholar 

  • Chittapun, S., P. Pholpunthin & H. Segers, 2005. Restoration of tropical peat swamp rotifer communities after perturbation: an experimental study of recovery of rotifers from the resting egg bank. Hydrobiologia 546(1): 281–289.

    Google Scholar 

  • Colautti, D., C. Baigún, F. Llompart, T. Maiztegui, J. G. De Souza & L. Balboni, 2015. Fish assemblage of a Pampean shallow lake, a story of instability. Hydrobiologia 752: 175–186.

    Google Scholar 

  • Conzonno, V. H. & E. Claverie, 1990. Chemical characteristics of the water of Chascomús pond. Revista Brasilera de Biologia 50: 15–21.

    Google Scholar 

  • De Stasio, B. T. J., 1990. The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnology and Oceanography 35: 1079–1090.

    Google Scholar 

  • Diovisalvi, N., V. Y. Bohn, M. C. Piccolo, G. M. E. Perillo, C. Baigún & H. E. Zagarese, 2015a. Shallow lakes from the Central Plains of Argentina: an overview and worldwide comparative analysis of their basic limnological features. Hydrobiologia 752: 5–20.

    CAS  Google Scholar 

  • Diovisalvi, N., G. E. Salcedo Echeverry, L. Lagomarsino & H. E. Zagarese, 2015b. Seasonal patterns and responses to an extreme climate event of rotifers community in a shallow eutrophic Pampean lake. Hydrobiologia 752: 125–137.

    CAS  Google Scholar 

  • Diovisalvi, N., M. Odriozola, J. García de Souza, F. Rojas Molina, M. S. Fontanarrosa, R. Escaray, J. Bustingorry, P. Sanzano, F. Grosman & H. Zagarese, 2018. Species-specific phenological trends in shallow Pampean lakes (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere. Global Change Biology 24(11): 5137–5148.

    PubMed  Google Scholar 

  • Ekvall, M. K. & L. Hansson, 2012. Differences in recruitment and life-history strategy alter zooplankton spring dynamics under climate-change conditions. PLoS ONE 7: e44614.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eskinazi-Sant’anna, E. M. & M. L. Pace, 2018. The potential of the zooplankton resting-stage bank to restore communities in permanent and temporary waterbodies. Journal of Plankton Research 40: 458–470.

    Google Scholar 

  • Fermani, P., N. Diovisalvi, A. Torremorell, L. Lagomarsino, H. E. Zagarese & F. Unrein, 2013. The microbial food web structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 714: 115–130.

    CAS  Google Scholar 

  • García-Roger, E. M., M. J. Carmona & M. Serra, 2006. Hatching and viability of rotifer diapausing eggs collected from pond sediments. Freshwater Biology 51: 1351–1358.

    Google Scholar 

  • García-Roger, E. M., X. Armengol-Díaz, M. J. Carmona & M. Serra, 2008. Assessing rotifer diapausing egg bank diversity and abundance in brackish temporary environments: an ex situ sediment incubation approach. Fundamental and Applied Limnology 173: 79–88.

    Google Scholar 

  • Gilbert, J. J., 2017. Resting-egg hatching and early population development in rotifers: a review and a hypothesis for differences between shallow and deep waters. Hydrobiologia 796: 235–243.

    Google Scholar 

  • Gilbert, J. J. & T. Schröder, 2004. Rotifers from diapausing, fertilized eggs: unique features and emergence. Limnology and Oceanography 49: 1341–1354.

    Google Scholar 

  • Gyllström, M. & L.-A. Hansson, 2004. Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquatic Sciences 66: 274–295.

    Google Scholar 

  • Hairston, N. G., A. M. Hansen & W. R. Schaffner, 2000. The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshwater Biology 45: 133–145.

    Google Scholar 

  • Kosmidis, I., E. C. K. Pagui & N. Sartori, 2017. Bias reduction in generalized linear models. Statistical Methods in Medical Research.

  • Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Gebrüder Borntraeger. Borntraeger, Gebrüder, Berlin.

  • Lenth, R., H. Singmann, J. Love, P. Buerkner & M. Herve, 2019. Package “emmeans”: estimated marginal means, aka least-squares means. Comprehensive R Archive Network 1–67.

  • Lindeman, R. L., 1939. Some affinities and varieties of the planktonic rotifer, Brachionus havanaensis Rousselet. Transactions of the American Microscopical Society 58(2): 210–221.

    Google Scholar 

  • Martínez-Ruiz, C. & E. M. García-Roger, 2015. Being first increases the probability of long diapause in rotifer resting eggs. Hydrobiologia 745(1): 111–121.

    Google Scholar 

  • May, L., A. E. Bailey-Watts & A. Kirika, 2001. The relationship between Trichocerca pusilla (Jennings), Aulacoseira spp. and water temperature in Loch Leven. Hydrobiologia 446: 29–34.

    Google Scholar 

  • Paggi, J. C., 1995. Crustacea cladocera. In Lopretto, C. & G. Tell (eds), Ecosistemas de Aguas Continentales: Metodologías Para Su Estudio. Ediciones Sur, La Plata: 909–951.

    Google Scholar 

  • Pérez, G. L., L. Lagomarsino & H. E. Zagarese, 2013. Optical properties of highly turbid shallow lakes with contrasting turbidity origins: the ecological and water management implications. Journal of Environmental Management 130: 207–220.

    PubMed  Google Scholar 

  • Pérez-Martínez, C., L. Jiménez, E. Moreno & J. M. Conde-Porcuna, 2013. Emergence pattern and hatching cues of Daphnia pulicaria (Crustacea, Cladocera) in an alpine lake. Hydrobiologia 707: 47–57.

    Google Scholar 

  • Pourriot, R. & T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.

    Google Scholar 

  • Pourriot, R., D. Benest, & C. Rougier, 1983. Effet de la température sur l’éclosion d’ceufs de durée provenant de populations naturelles de Brachionidae (Rotiferes). Bulletin de la Société zoologique de France 59–66.

  • Radzikowski, J., K. Krupinska & M. Slusarczyk, 2018. Different thermal stimuli initiate hatching of Daphnia diapausing eggs originating from lakes and temporary waters. Limnology 19: 81–88.

    Google Scholar 

  • Reid, J. W., 1985. Chave de identificação e lista de referências bibliográficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Universidad de Sao Paulo. Boletim de Zoologia da Universidade de São Paulo 9: 17–143.

    Google Scholar 

  • Ricci, C., 2001. Dormancy patterns in rotifers. Hydrobiologia 446–447: 1–11.

    Google Scholar 

  • Ruttner-Kolisko, A., 1974. Plankton rotifers: biology & taxonomy. Die Binnergewasser 26: 146.

    Google Scholar 

  • Scheuerl, T. & C. P. Stelzer, 2013. Patterns and dynamics of rapid local adaptation and sex in varying habitat types in rotifers. Ecology and Evolution 3(12): 4253–4264.

    PubMed  PubMed Central  Google Scholar 

  • Schröder, T., 2005. Diapause in monogonont rotifers. Hydrobiologia 546: 291–306.

    Google Scholar 

  • Ślusarczyk, M., & S. Flis, 2018. Light quantity, not photoperiod terminates diapause in the crustacean Daphnia. Limnology and Oceanography 1–7.

  • Ślusarczyk, M., W. Chlebicki, J. Pijanowska & J. Radzikowski, 2019. The role of the refractory period in diapause length determination in a freshwater crustacean. Scientific Reports 9(1): 1–7.

    Google Scholar 

  • Tarazona, E., E. M. García-Roger & M. J. Carmona, 2017. Experimental evolution of bet hedging in rotifer diapause traits as a response to environmental unpredictability. Oikos 126: 1162–1172.

    Google Scholar 

  • Torremorell, A., J. Bustigorry, R. Escaray & H. E. Zagarese, 2007. Seasonal dynamics of a large, shallow lake, Laguna Chascomús: the role of light limitation and other physical variables. Limnologica 37: 100–108.

    CAS  Google Scholar 

  • Torremorell, A., M. Llames, G. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2009. Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshwater Biology 54: 437–449.

    Google Scholar 

  • Vandekerkhove, J., S. Declerck, L. Brendonck, J. M. Conde-Porcuna, E. Jeppesen & L. De Meester, 2005. Hatching of cladoceran resting eggs: temperature and photoperiod. Freshwater Biology 50: 96–104.

    Google Scholar 

  • Vargas, A. L., J. M. Santangelo & R. L. Bozelli, 2019. Recovery from drought: viability and hatching patterns of hydrated and desiccated zooplankton resting eggs. International Review of Hydrobiology 104: 26–33.

    Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, Fourth edition. Springer, New York. ISBN 0-387-95457-0, http://www.stats.ox.ac.uk/pub/MASS4.

  • Walczyńska, A. & M. Serra, 2014. Species size affects hatching response to different temperature regimes in a rotifer cryptic species complex. Evolutionary Ecology 28: 131–140.

    Google Scholar 

  • Weber, C. I., 1993. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 4th edn. United States Environmental Protection Agency, Cincinnati, Ohio, EPA/600/4–90/027F.

  • Wolf, H. G. & G. R. Carvalho, 1989. Resting eggs of lake-Daphnia II. In situ observations on the hatching of eggs and their contribution to population and community structure. Freshwater Biology 22: 471–478.

    Google Scholar 

Download references

Acknowledgements

We thank José Bustingorry and Roberto Escaray for field assistance and John J. Gilbert for his comments on the manuscript. This work was partially fulfilled during a Fellowship stay of Horacio E. Zagarese at the Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany. Financial support was provided by the ANPCyT PICT-2015-3539.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Diovisalvi.

Additional information

Handling editor: Andrew Dzialowski

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odriozola, M., Zagarese, H.E. & Diovisalvi, N. Zooplankton hatching from dormant eggs in a large Pampean shallow lake. Hydrobiologia 847, 2097–2111 (2020). https://doi.org/10.1007/s10750-020-04233-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04233-x

Keywords

Navigation