[go: up one dir, main page]

Skip to main content
Log in

Geophysical Techniques for Monitoring Settlement Phenomena Occurring in Reinforced Concrete Buildings

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Geophysical investigations could provide a valid tool for the identification of possible causes of settlement phenomena that affect civil buildings. They provide a non-invasive method of obtaining high-resolution information about the subsoil, saving time and money. However, uncertainties related to the accurate interpretation of the acquired data could potentially reduce the value of these methods. For this reason, the integration of non-invasive tests with direct measurements to support geophysical data interpretation is strongly recommended. This is a fundamental step in the process of defining a sufficiently reliable geological model to explain the cause of failure. Among the various geophysical techniques, electrical resistivity tomography and ground penetrating radar offer significant advantages for monitoring the status of the conservation of civil engineering structures and infrastructures. This paper presents the most recent and beneficial advances of the use of electric and electromagnetic geophysical methods in the field of civil engineering, with particular attention to their applications for monitoring subsidence and settlement phenomena. Finally, the possibilities of the joint use of resistivity and electromagnetic methods for studying the causes of the structural decay that affects two precast buildings are monitored and discussed. The results demonstrate the capability of combining non-destructive geophysical techniques with direct data, for evaluating the safety of building constructions and solving geotechnical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alani AM, Aboutalebi M, Kilic G (2014) Integrated health assessment strategy using NDT for reinforced concrete bridges. NDT&E Int 61:80–94

    Google Scholar 

  • Annan AP (2005) Ground-penetrating radar. Near surface geophysics, pp 357–438. EISBN: 978-1-56080-171-9 print ISBN: 978-1-56080-130-6 https://doi.org/10.1190/1.9781560801719.ch11

  • ASTM D2488-00 (2000) Standard practice for description and identification of soils (visual-manual procedure). ASTM International, West Conshohocken. www.astm.org

  • Benedetto A, Pensa S (2007) Indirect diagnosis of pavement structural damages using surface GPR reflection techniques. J Appl Geophys 62:107–123

    Google Scholar 

  • Benedetto A, D’Amico F, Fattorini F (2009) Measurement of moisture under road pavement: a new approach based on GPR signal processing in the frequency domain. International Workshop on Advanced Ground Penetrating Radar, Granada

    Google Scholar 

  • Binda L, Saisi S (2009) Diagnosis and investigation strategy in the assessment of historic buildings. In: Proceedings of 4th international congress on “Science and technology for the Safeguard of Cultural Heritage in the Mediterranean Basin” Cairo Egypt

  • Binley A, Kemna A (2005) Electrical methods. In: Rubin and Hubbard (eds) Hydrogeophysics. Springer, Berlin, pp 129–156

  • Bonnet S, Balayssac JB (2018) Combination of the Wenner resistivimeter and Torrent permeameter methods for assessing carbonation depth and saturation level of concrete. Constr Build Mater 188:1149–1165. https://doi.org/10.1016/j.conbuildmat.2018.07.151

    Article  Google Scholar 

  • Budi GS (2017) Settlement of residential houses supported by piled foundation embedded in expansive soil. Procedia Eng 171:454–460. https://doi.org/10.1016/j.proeng.2017.01.356

    Article  Google Scholar 

  • Buettner M, Ramirez A, Daily W (1996) Electrical resistance tomography for imaging the spatial distribution of moisture in pavement sections. In: Structural materials technology an NDT conference, San Diego, CA, USA

  • Capozzoli L, Rizzo E (2017) Combined NDT techniques in civil engineering applications: Laboratory and real test. Constr Build Mater 154:15

    Google Scholar 

  • Capozzoli L, Caputi A, De Martino G, Giampaolo V, Luongo R, Perciante F, Rizzo E (2015) Electrical and electromagnetic techniques applied to an archaeological framework reconstructed in laboratory. In: Advanced ground penetrating radar (IWAGPR). https://doi.org/10.1109/iwagpr.2015.7292655

  • Carbonel D, Rodriguez-Tribaldos V, Gutierrez F, Galve JP, Guerrero J, Zarroca M, Roque C, Linares R, McCalpin JP, Acosta E (2015) Investigating a damaging buried sinkhole cluster in an urban area (Zaragoza city, NE Spain) integrating multiple techniques: geomorphological surveys, DInSAR, DEMs, GPR, ERT, and trenching. Geomorphology 229:3–16

    Google Scholar 

  • Cardarelli E, Di Filippo G, Tuccinardi E (2006) Electrical resistivity tomography to detect buried cavities in Rome: a case study. Near Surf Geophys 4:387–392

    Google Scholar 

  • Cassidy NJ (2009) Chapter 5—Ground penetrating radar data processing, modelling and analysis. In: Jol HM (ed) Ground penetrating radar theory and applications. Elsevier, Amsterdam, pp 141–176. https://doi.org/10.1016/B978-0-444-53348-7.00005-3

    Chapter  Google Scholar 

  • Catapano I, Ludeno G, Soldovieri F, Tosti F, Padeletti G (2018) Structural Assessment via Ground Penetrating Radar at the Consoli Palace of Gubbio (Italy). Remote Sens 10:45

    Google Scholar 

  • Chamon N, Dobereiner L (1988) An example of the uses of geophysical methods for the investigation of a cavern in sandstones. Bull Int Assoc Eng Geol 38:37–43

    Google Scholar 

  • Chen FH (1999) Soil engineering, testing, design and remediation. CRC Press, Boca Raton

    Google Scholar 

  • Claerbout JF, Muir F (1973) Robust modeling with erratic data. Geophysics 38:826–844

    Google Scholar 

  • Dahlin T, Bernstone C (1997) A roll-along technique for 3D resistivity data acquisition with multi-electrode arrays. In: Proceedings of the SAGEEP’97, vol 2, pp 927–935

  • Daniels DJ (2004) Ground penetrating radar. In: IEE radar, sonar and navigation series 15. IEE, London

  • de Groot-Hedlin CD, Constable SC (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55:1613–1624

    Google Scholar 

  • Dell’Aversana P (2014) Integrated geophysical models. EAGE Book

  • Dérobert X, Villain G (2017) Effect of water and chloride contents and carbonation on the electromagnetic characterization of concretes on the GPR frequency band through designs of experiment. NDT and E Int 92:187–198

    Google Scholar 

  • Dérobert X, Aubagnac C, Abraham O (2002) Comparison of NDT techniques on a post-tensioned beam before its autopsy. NDT&E Int 35:541–548

    Google Scholar 

  • Dérobert X, Iaquinta J, Klyszc G, Balayssac JP (2008) Use of capacitive and GPR techniques for the non-destructive evaluation of cover concrete. NDT&E Int 41:44–52

    Google Scholar 

  • Dérobert X, Lataste JF, Balayssac JP, Laurens S (2017) Evaluation of chloride contamination in concrete using electromagnetic non-destructive testing methods. NDT&E Int 89:19–29

    Google Scholar 

  • Díaz E, Robles P, Tomás R (2018) Multitechnical approach for damage assessment and reinforcement of buildings located on subsiding areas: Study case of a 7-story RC building in Murcia (SE Spain). Eng Struct 173:744–757. https://doi.org/10.1016/j.engstruct.2018.07.031

    Article  Google Scholar 

  • Du Plooy R, Palma Lopes S, Villain G, Dérobert X (2013) Development of a multi-ring resistivity cell and multi-electrode resistivity probe for investigation of cover concrete condition. NDT&E Int 54:27–36. https://doi.org/10.1016/j.ndteint.2012.11.007

    Article  Google Scholar 

  • Flint RC, Jackson PD, McCann DM (1999) Geophysical imaging inside masonry structures. NDT&E Int 32(8):469–479

    Google Scholar 

  • Fruhwirth RK, Schmoller R, Oberaigner ER (1996) Some aspects of the estimation of electromagnetic wave velocities. In: Proceedings of the 6th international conference on ground penetrating radar. Tohoku University, Sendai, Japan, pp 135–138

  • Furman A, Ferré PA, Warrick AW (2003) A sensitivity analysis of electrical resistivity tomography array types using analytical element modeling. Vadose Zone J 2(3):416–423. https://doi.org/10.2113/2.3.416

    Article  Google Scholar 

  • Giampaolo V, Capozzoli L, Grimaldi S, Rizzo E (2016) Sinkhole risk assessment by ERT: The case study of Sirino Lake (Basilicata, Italy). Geomorphology 253(15):1–9

    Google Scholar 

  • Gómez-Ortiz D, Martín-Crespo T (2012) Assessing the risk of subsidence of a sinkhole collapse using ground penetrating radar and electrical resistivity tomography. Eng Geol 149–150:1–12

    Google Scholar 

  • Guérin R, Baltassat JM, Boucher M, Chalikakis K, Galibert PY, Girard JF, Plagnes V, Valois R (2009) Geophysical characterisation of karstic networks—application to the Ouysse system (Poumeyssen, France). CR Geosci 341(10–11):810–817

    Google Scholar 

  • Handy RL (2001) Does Lateral Stress Really Influence Settlement. J Geotech Geoenviron Eng ASCE 127(7):623–626

    Google Scholar 

  • Handy RL (2007) Geotechnical engineering: soil and foundation principles and practice, 5th edn. Mcgraw-Hill, New York

    Google Scholar 

  • Hugenschmidt J, Mastrangelo R (2006) GPR inspection of concrete bridges. Cem Concr Compos 28:384–392. https://doi.org/10.1016/j.cemconcomp.2006.02.016

    Article  Google Scholar 

  • Hugenschmidt J, Kasa C, Kato H (2013) GPR for the inspection of industrial railway tracks. Near Surf Geophys 11(5):485–491

    Google Scholar 

  • Hunkeler F (1996) The resistivity of pore water solution—a decisive parameter of rebar corrosion and repair methods. Constr Build Mater 10(5):381–389. https://doi.org/10.1016/0950-0618(95)00029-1

    Article  Google Scholar 

  • Jol HM (2008) Ground penetrating radar: theory and applications. In: Jol HM (ed) Theory and applications. Elsevier, Amsterdam

    Google Scholar 

  • Kaliakin VN (2017) Chapter 8—Example problems related to compressibility and settlement of soils. In: Kaliakin VN (ed) Soil mechanics. Butterworth-Heinemann, London, pp 331–376. https://doi.org/10.1016/B978-0-12-804491-9.00008-2

    Chapter  Google Scholar 

  • Kanli AI, Taller G, Nagy P, Tildy P, Pronay Z, Toros E (2015) GPR survey for reinforcement of historical heritage construction at fire tower of Sopron. J Appl Geophys 112:79–90

    Google Scholar 

  • Kaufmann G (2014) Geophysical mapping of solution and collapse sinkholes. J Appl Geophys 111:271–288

    Google Scholar 

  • Keersmaekers R, Van Rickstal F, Van Gemert D (2004) Geo-electrical techniques as a non-destructive appliance for restoration purposes. In: Modena, Lourenço, Roca (eds) Structural analysis of historical constructions

  • Keersmaekers DP, Knapen M, Leus M, Van Gemert D (2008) Enhancement of geo-electrical techniques for NDT of masonry. In: D’Ayala D, Fodde E (eds) Structural analysis of historical constructions. Bath, London, pp 1053–1060

    Google Scholar 

  • Kim JH, Cho SJ, Yi MJ (2004) Borehole radar survey to explore limestone cavities for the construction of a highway bridge. Explor Geophys 35:80–87. https://doi.org/10.1071/EG04080

    Article  Google Scholar 

  • Krawczyk CM, Polom U, Beilecke T (2013) Shear-wave reflection seismics as a valuable tool for near-surface applications. Lead Edge. https://doi.org/10.1190/tle32030256.1

    Article  Google Scholar 

  • Lai WWK, Dérobert X, Annan P (2018) A review of ground penetrating radar application in civil engineering: a 30-year journey from locating and testing to imaging and diagnosis. NDT&E Int 96:58–78. https://doi.org/10.1016/j.ndteint.2017.04.002

    Article  Google Scholar 

  • LaBrecque DJ, Miletto M, Daily W, Ramirez A, Owen E (1996) The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics 61(2):538–548

    Google Scholar 

  • Lapenna V (2016) Resilient and sustainable cities of tomorrow: the role of applied geophysics. Bollettino di Geofisica Teorica ed Applicata 58(4):237–251. https://doi.org/10.4430/bgta0204

    Article  Google Scholar 

  • Lataste JF, Sirieix C, Breysse D, Frappa M (2003) Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering. NDT&E Int 36(6):383–394. https://doi.org/10.1016/S0963-8695(03)00013-6

    Article  Google Scholar 

  • Laurens S, El Barrak M, Balayssac JP, Rhazi J (2007) Aptitude of the near-field direct wave of ground-coupled radar antennas for the characterisation of the cover concrete. Constr Build Mater 21(12):2072–2077. https://doi.org/10.1016/j.conbuildmat.2006.05.058

    Article  Google Scholar 

  • Leucci G (2006) Contribution of ground-penetrating radar and electrical resistivity tomography to identify the cavity and fractures under the main church in Botrugno (Lecce, Italy). J Archaeol Sci 33(9):1194–1204. https://doi.org/10.1016/j.jas.2005.12.009

    Article  Google Scholar 

  • Liu X, Serhir M, Lambert M (2018) Detectability of junctions of underground electrical cables with a ground penetrating radar: Electromagnetic simulation and experimental measurements. Constr Build Mater 158:1099–1110

    Google Scholar 

  • Loizos A, Plati A (2007) Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches. NDTE Int 40(2):147–157

    Google Scholar 

  • Loke MH (2000) Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys

  • Loperte A, Soldovieri F, Palombo A, Santini F, Lapenna V (2016) An integrated geophysical approach for water infiltration detection and characterization at Monte Cotugno rock-fill dam (southern Italy). Eng Geol 211:162–170. https://doi.org/10.1016/j.enggeo.2016.07.005

    Article  Google Scholar 

  • Maldague X (2001) Theory and practice of infrared technology for non destructive testing. Wiley, New York, p 684

    Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Google Scholar 

  • Martel R, Castellazzi P, Gloaguen E, Trépanier L, Garfias J (2018) ERT, GPR, Insar, and tracer tests to characterize karst aquifer systems under urban areas: the case of Quebec City. Geomorphology 310:45–56. https://doi.org/10.1016/j.geomorph.2018.03.003

    Article  Google Scholar 

  • Martínez K, Mendoza A (2011) Urban seismic site investigations for a new metro in central Copenhagen: near surface imaging using reflection, refraction and VSP methods. Phys Chem Earth A/B/C 36(16):1228–1236. https://doi.org/10.1016/j.pce.2011.01.003

    Article  Google Scholar 

  • Masini N, Persico R, Rizzo E (2010) Some examples of GPR prospecting for monitoring of the monumental heritage. J Geophys Eng 7:190. https://doi.org/10.1088/1742-2132/7/2/S05

    Article  Google Scholar 

  • Masini N, Capozzoli L, Romano G, Sieczkowska D, Sileo M, Bastante J, Astete Victoria F, Ziolkowski M, Lasaponara R (2018) Archaeogeophysical based approach for Inca archaeology. Surv Geophys. https://doi.org/10.1007/s10712-018-9502-2

    Article  Google Scholar 

  • Mokhberi M (2015) Vulnerability evaluation of the urban area using the H/V spectral ratio of microtremors. Int J Disaster Risk Reduct 13:369–374. https://doi.org/10.1016/j.ijdrr.2015.06.012

    Article  Google Scholar 

  • Moore JC, Pälli A, Ludwing F, Blatter H, Jania J, Gadek B, Glowacki P, Mochnacki D, Isaksson E (1999) High-resolution hydrothermal structure of Hansbreen, Spitsbergen, mapped by ground-penetrating radar. J Glaciol 45:524–532

    Google Scholar 

  • Morelli G, LaBrecque DJ (1996) Advances in ERT inverse modeling. Eur J Min Geol Eng 1:171–186

    Google Scholar 

  • Moropoulou A, Labropoulos KC, Delegou ET, Karoglou M, Bakolas A (2013) Nondestructive techniques as a tool for the protection of built cultural heritage. Constr Build Mater 48:1222–1239. https://doi.org/10.1016/j.conbuildmat.2013.03.044

    Article  Google Scholar 

  • Naudet V, Lazzari M, Perrone A, Loperte A, Piscitelli S, Lapenna V (2008) Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy). Eng Geol 98:156–167

    Google Scholar 

  • Nuzzo L, Calia A, Liberatore D, Masini N, Rizzo E (2010) Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window. Adv Geosci 24:69–82. https://doi.org/10.5194/adgeo-24-69-2010

    Article  Google Scholar 

  • Oh WT, Vanapalli SK (2018) Modelling the stress versus settlement behavior of shallow foundations in unsaturated cohesive soils extending the modified total stress approach. Soils Found 58(2):382–397. https://doi.org/10.1016/j.sandf.2018.02.008

    Article  Google Scholar 

  • Pérez-Gracia V, García García F, Rodriguez Abad I (2008) GPR evaluation of the damage found in the reinforced concrete base of a block of flats: a case study. NDT & E Int 41(5):341–353. https://doi.org/10.1016/j.ndteint.2008.01.001

    Article  Google Scholar 

  • Perrone A, Iannuzzi A, Lapenna V, Lorenzo P, Piscitelli S, Rizzo E, Sdao F (2004) High-resolution electrical imaging of the Varco d’Izzo earthflow (southern Italy). J Appl Geophys 56(1):17–29. https://doi.org/10.1016/j.jappgeo.2004.03.004

    Article  Google Scholar 

  • Piscitelli S, Rizzo E, Cristallo F, Lapenna V, Crocco L, Persico R, Soldovieri F (2007) GPR and microwave tomography for detecting shallow cavities in the historical area of “Sassi of Matera” (southern Italy). Near Surf Geophys 5:275–284. https://doi.org/10.3997/1873-0604.2007009

    Article  Google Scholar 

  • Plati C, Dérobert X (2015) Inspection procedures for effective GPR sensing and mapping of underground utilities and voids, with a focus to urban areas. In: Benedetto A, Pajewski L (eds) Civil engineering applications of ground penetrating radar. Springer, Berlin

    Google Scholar 

  • Proto MF et al (2010) Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project. Sensors 10:10620

    Google Scholar 

  • Pueyo-Anchuela Ó, Casas-Sainz AM, Soriano MA, Pocoví-Juan A (2011) Geophysical techniques applied to urban planning in complex near surface environments. Examples of Zaragoza, NE Spain. Phys Chem Earth A/B/C 36(16):1211–1227. https://doi.org/10.1016/j.pce.2011.05.010

    Article  Google Scholar 

  • Rizzo E, Santoriello A, Capozzoli L, De Martino G, De Vita CB, Musmeci D, Perciante F (2018) Geophysical survey and archaeological data at Masseria Grasso (Benevento, Italy). Surv Geophys. https://doi.org/10.1007/s10712-018-9494-y

    Article  Google Scholar 

  • Sagnard F, Norgeot C, Derobert X, Baltazart V, Merliot E, Derkx F, Lebental B (2016) Utility detection and positioning on the urban site sense-city using ground-penetrating radar systems. Measurement 88:318–330. https://doi.org/10.1016/j.measurement.2016.03.044

    Article  Google Scholar 

  • Samyn K, Mathieu F, Bitri A, Nachbaur A, Closset L (2014) Integrated geophysical approach in assessing karst presence and sinkhole susceptibility along flood-protection dykes of the Loire River, Orléans, France. Eng Geol 183:170–184

    Google Scholar 

  • Sandmeier KJ (2016) ReflexW version 8.1. Program for processing of seismic, acoustic or electromagnetic reflection, refraction and transmission data. Karlsruhe, Software Manual, pp 628

  • Santarato G, Ranieri G, Occhi M, Morelli G, Fischanger F, Gualerzi D (2011) Three-dimensional Electrical Resistivity Tomography to control the injection of expanding resins for the treatment and stabilization of foundation soils. Eng Geol 119:18–30. https://doi.org/10.1016/j.enggeo.2011.01.009

    Article  Google Scholar 

  • Sass O, Viles AH (2006) How wet are these walls? Testing a novel technique for measuring moisture in ruined walls. J Cult Herit 7:257–263

    Google Scholar 

  • Sass O, Viles AH (2010) Wetting and drying of masonry walls: 2D-resistivity monitoring of driving rain experiments on historic stonework in Oxford, UK. J Appl Geophys 70:72–83

    Google Scholar 

  • Sevil J, Gutiérrez F, Zarroca M (2017) G Desir, Carbonel D, Guerrero J, Linares R, Roqué C, Fabregat I, Sinkhole investigation in an urban area by trenching in combination with GPR, ERT and high-precision leveling. Mantled evaporite karst of Zaragoza city, NE Spain. Eng Geol 231:9–20

    Google Scholar 

  • Shangguan P, Al-Qadi IL, Coenen A, Zhao S (2016) Algorithm development for the application of ground-penetrating radar on asphalt pavement compaction monitoring. Int J Pavement Eng 17(3):189–200

    Google Scholar 

  • Sirombo E, Filippi M, Catalano A, Sica A (2017) Building monitoring system in a large social housing intervention in Northern Italy. Energy Procedia 140:386–397. https://doi.org/10.1016/j.egypro.2017.11.151

    Article  Google Scholar 

  • Szalai S, Novák A, Szarka L (2011) Which geoelectric array sees the deepest in a noisy environment? Depth of detectability values of multielectrode systems for various two-dimensional models. Phys Chem Earth A/B/C 36(16):1398–1404. https://doi.org/10.1016/j.pce.2011.01.008

    Article  Google Scholar 

  • Tosti F, Slob EC (2015) Determination, by using GPR, of the volumetric water content in structures, substructures, foundations and soil, civil engineering applications of ground penetrating radar. Springer, Berlin, pp 163–194

    Google Scholar 

  • Tosti F, Umiliaco A (2014) FDTD Simulation of the GPR signal for preventing the risk of accidents due to pavement damages. Int J Interdiscip Telecommun Netw 6(1):1–9

    Google Scholar 

  • Tosti F, Bianchini Ciampoli L, D’Amico F, Alani AM (2018) Benedetto, An experimental-based model for the assessment of the mechanical properties of road pavements using ground-penetrating radar. Constr Build Mater 165:966–974

    Google Scholar 

  • Ungureanu C, Priceputu A, Bugea AL, Chirică A (2017) Use of electric resistivity tomography (ERT) for detecting underground voids on highly anthropized urban construction sites. Procedia Eng 209:202–209. https://doi.org/10.1016/j.proeng.2017.11.148

    Article  Google Scholar 

  • Van Rickstal F, Van Gemert D, Keersmaekers R, Posen D (2008) Enhancement of geo-electrical techniques for NDT of masonry. In: D’Ayala, Fodde (eds) Structural analysis of historic construction. Taylor & Francis, London

    Google Scholar 

  • Verma SK, Sharma SP (2011) Urban geophysics. Phys Chem Earth A/B/C 36(16):1209–1210. https://doi.org/10.1016/j.pce.2011.09.007

    Article  Google Scholar 

  • Viriyametanont K, Laurens S, Klysz G, Balayssac JP, Arliguie G (2008) Radar survey of concrete elements: effect of concrete properties on propagation velocity and time zero. NDT&E Int 41(3):198–207. https://doi.org/10.1016/j.ndteint.2007.10.001

    Article  Google Scholar 

  • Wada K, Karasawa S, Kawata K, Ebihara S (2014) Small-diameter directional borehole radar system with 3D sensing capability. In: Proceeding of the 15th international conference on ground penetrating radar, GPR. https://doi.org/10.13140/2.1.3105.9207

  • Williams RA, Stephenson WJ, Odum JK (2006) Seismic imaging in urban areas: examples and lessons learned. In: Symposium on the application of geophysics to environmental and engineering problems, EEGS conference proceedings, 2006 annual meeting, Seattle, Washington, April 2–6, p 10

  • Wiwattanachang N, Giao PH (2011) Monitoring crack development in fiber concrete beam by using electrical resistivity imaging. J Appl Geophys 75:294–304

    Google Scholar 

  • Zhu J, Currens JC (2011) Dinger J S, Challenges of using electrical resistivity method to locate karst conduits—a field case in the Inner Bluegrass Region, Kentucky. J Appl Geophys 75:523–530

    Google Scholar 

  • Zini Z, Calligaris C, Forte E, Petronio E, Zavagno E, Boccali C, Cucchi A (2015) A multidisciplinary approach in sinkhole analysis: the Quinis village case study (NE-Italy). Eng Geol 197:132–144

    Google Scholar 

  • Zuffianò LE, Basso A, Casarano D, Dragone V, Limoni PP, Romanazzi A, Santaloia F, Polemio M (2016) Coastal hydrogeological system of Mar Piccolo (Taranto, Italy). Environ Sci Pollut Res 23(13):12502–12514

    Google Scholar 

Download references

Acknowledgements

The authors thank the Tomogea srl geophysical company for supporting us with the geophysical activities described in this paper. The authors are deeply grateful to Chloé Salisbury for assisting with the English version of the manuscript. The authors thank the anonymous reviewers and the Editor for their useful suggestions and comments that have helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Capozzoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capozzoli, L., De Martino, G., Polemio, M. et al. Geophysical Techniques for Monitoring Settlement Phenomena Occurring in Reinforced Concrete Buildings. Surv Geophys 41, 575–604 (2020). https://doi.org/10.1007/s10712-019-09554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-019-09554-8

Keywords

Navigation