[go: up one dir, main page]

Skip to main content
Log in

Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

It is well acknowledged that there are large uncertainties associated with radar-based estimates of rainfall. Numerous sources of these errors are due to parameter estimation, the observational system and measurement principles, and not fully understood physical processes. Propagation of these uncertainties through all models for which radar-rainfall are used as input (e.g., hydrologic models) or as initial conditions (e.g., weather forecasting models) is necessary to enhance the understanding and interpretation of the obtained results. The aim of this paper is to provide an extensive literature review of the principal sources of error affecting single polarization radar-based rainfall estimates. These include radar miscalibration, attenuation, ground clutter and anomalous propagation, beam blockage, variability of the ZR relation, range degradation, vertical variability of the precipitation system, vertical air motion and precipitation drift, and temporal sampling errors. Finally, the authors report some recent results from empirically-based modeling of the total radar-rainfall uncertainties. The bibliography comprises over 200 peer reviewed journal articles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alberoni PP, Andersson T, Mezzasalma P, Michelson DB, Nanni S (2001) Use of the vertical reflectivity profile for identification of anomalous propagation. Meteorol Appl 8:257–266

    Google Scholar 

  • Anagnostou EN, Krajewski WF, Smith J (1999) Uncertainty quantification of mean-areal radar-rainfall estimates. J Atmos Ocean Technol 16:206–215

    Google Scholar 

  • Anagnostou EN, Morales CA, Dinku T (2001) The use of TRMM precipitation radar observations in determining ground radar calibration biases. J Atmos Ocean Technol 18:616–628

    Google Scholar 

  • Anagnostou MN, Anagnostou EN, Vivekanandan J (2006) Correction for rain path specific and differential attenuation of X-band dual-polarization observations. IEEE Trans Geosci Remote Sens 44:2470–2480

    Google Scholar 

  • Andrieu H, Creutin JD (1995) Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. J Appl Meteorol 34:225–239

    Google Scholar 

  • Andrieu H, Delrieu G, Creutin JD (1995) Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part II: Sensitivity analysis and case study. J Appl Meteorol 34:240–259

    Google Scholar 

  • Andrieu H, Creutin JD, Delrieu G, Faure D (1997) Use of a weather radar for the hydrology of a mountainous area. 1. Radar measurement interpretation. J Hydrol 193:1–25

    Google Scholar 

  • Archibald E (2000) Enhanced clutter processing for the UK weather radar network. Phys Chem Earth (B) 25(10–12):823–828

    Google Scholar 

  • Atlas D (1990) Radar in meteorology. American Meteorological Society, Boston

    Google Scholar 

  • Atlas D (2002) Radar calibration: some simple approaches. Bull Am Meteorol Soc 83:1313–1316

    Google Scholar 

  • Atlas D, Banks HC (1951) The interpretation of microwave reflections from rainfall. J Meteorol 8:271–282

    Google Scholar 

  • Atlas D, Ulbrich CW (1977) Path-integrated and area-integrated rainfall measurement by microwave attenuation in 1–3 cm band. J Appl Meteorol 16:1322–1331

    Google Scholar 

  • Atlas D, Rosenfeld D, Wolff DB (1993) C-band attenuation by tropical rainfall in Darwin, Australia, using climatologically tuned Ze–R relations. J Appl Meteorol 32:426–430

    Google Scholar 

  • Atlas D, Ulbrich CW, Marks FD, Amitai E, Williams CR (1999) Systematic variation of drop size and radar-rainfall relations. J Geophys Res Atmos 104:6155–6169

    Google Scholar 

  • Auer AH (1994) Hail recognition through the combined use of radar reflectivity and cloud-top temperatures. Mon Weather Rev 122:2218–2221

    Google Scholar 

  • Austin PM (1987) Relation between measured radar reflectivity and surface rainfall. Mon Weather Rev 115:1053–1071

    Google Scholar 

  • Austin PM, Bemis AC (1950) A quantitative study of the “bright band” in radar precipitation echoes. J Meteorol 7:145–151

    Google Scholar 

  • Austin GL, Cluckie ID (2005) History of radar and radar meteorology. In: Knight DW, Shamseldin AY (eds) River basin modelling for flood risk mitigation. Taylor & Francis, UK, pp 157–170

  • Baeck ML, Smith JA (1998) Rainfall estimation by the WSR-88D for heavy rainfall events. Weather Forecast 13:416–436

    Google Scholar 

  • Balakrishnan N, Zrnic DS, Goldhirsh J, Rowland J (1989) Comparison of simulated rain rates from disdrometer data employing polarimetric radar algorithms. J Atmos Ocean Technol 6:476–486

    Google Scholar 

  • Battan LJ (1973) Radar observation of the atmosphere. The University of Chicago Press, Chicago

    Google Scholar 

  • Battan LJ (1976) Vertical air motion and the Z–R relation. J Appl Meteorol 15:1120–1121

    Google Scholar 

  • Bean BR, Dutton EJ (1968) Radio meteorology. National Bureau of Standards Monogr., No. 92. National Bureau of Standards, 435 pp

  • Bech J, Codina B, Lorente J, Bebbington D (2003) The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. J Atmos Ocean Technol 20:845–855

    Google Scholar 

  • Bech J, Codina B, Lorente J (2007a) Forecasting weather radar propagation conditions. Meteorol Atmos Phys 96:229–243

    Google Scholar 

  • Bech J, Gjertsen U, Haase G (2007b) Modelling weather radar beam propagation and topographical blockage at northern high latitudes. Quart J Royal Meteorol Soc 133:1191–1204

    Google Scholar 

  • Bechini R, Baldini L, Cremonini R, Gorgucci E (2008) Differential reflectivity calibration for operational radars. J Atmos Ocean Technol 25:1542–1555

    Google Scholar 

  • Bellon A, Lee G, Zawadzki I (2005) Error statistics of VPR corrections in stratiform precipitation. J Appl Meteorol 44:998–1015

    Google Scholar 

  • Bellon A, Lee G, Kilambi A, Zawadzki I (2007) Real-time comparisons of VPR-corrected daily rainfall estimates with a gauge mesonet. J Appl Meteorol Climatol 46:726–741

    Google Scholar 

  • Berenguer M, Zawadzki I (2008) A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Weather Forecast 23:1085–1101

    Google Scholar 

  • Berenguer M, Sempere-Torres D, Corral C, Sanchez-Diezma R (2006) A fuzzy logic technique for identifying nonprecipitating echoes in radar scans. J Atmos Ocean Technol 23:1157–1180

    Google Scholar 

  • Berne A, Uijlenhoet R (2007) Path-averaged rainfall estimation using microwave links: uncertainty due to spatial rainfall variability. Geophys Res Lett 34:L07403. doi:10.1029/2007GL029409

  • Berne A, Delrieu G, Andrieu H (2005) Estimating the vertical structure of intense Mediterranean precipitation using two X-band weather radar systems. J Atmos Ocean Technol 22:1656–1675

    Google Scholar 

  • Borga M, Anagnostou EN, Krajewski WF (1997) A simulation approach for validation of a brightband correction method. J Appl Meteorol 36:1507–1518

    Google Scholar 

  • Bourrel L, Sauvageot H, Vidal JJ, Dartus D, Dupouyet JP (1994) Radar measurement of precipitation in cold mountainous areas: the Garonne basin. Hydrol Sci J-J Des Sci Hydrol 39:369–389

    Google Scholar 

  • Brandes EA (2000) Dual-polarization radar fundamentals and algorithm prospects, NEXRAD program report—operational support facility WSR-88D commerce-defence-transportation, May 2000 (Online). Available at http://www.roc.noaa.gov/app/sta/algorithm00.pdf

  • Brandes EA, Vivekanandan J, Wilson JW (1999) A comparison of radar reflectivity estimates of rainfall from collocated radars. J Atmos Ocean Technol 16:1264–1272

    Google Scholar 

  • Brandes EA, Ryzhkov AV, Zrnic DS (2001) An evaluation of radar rainfall estimates from specific differential phase. J Atmos Ocean Technol 18:363–375

    Google Scholar 

  • Bringi VN, Chandrasekar V (2001) Polarimetric Doppler weather radar, principles and applications. Cambridge University Press, New York

    Google Scholar 

  • Bringi VN, Seliga TA, Aydin K (1984) Hail detection with a differential reflectivity radar. Science 225:1145–1147

    Google Scholar 

  • Bringi VN, Keenan TD, Chandrasekar V (2001) Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: a self-consistent method with constraints. IEEE Trans Geosci Remote Sens 39:1906–1915

    Google Scholar 

  • Brown RA, Lewis JM (2005) Path to NEXRAD - Doppler radar development at the National Severe Storms Laboratory. Bull Am Meteorol Soc 86:1459

    Google Scholar 

  • Brown RA, Wood VT, Barker TW (2002) Improved detection using negative elevation angles for mountaintop WSR-88Ds: simulation of KMSX near Missoula, Montana. Weather Forecast 17:223–237

    Google Scholar 

  • Brown RA, Flickinger BA, Forren E, Schultz DM, Sirmans D, Spencer PL, Wood VT, Ziegler CL (2005) Improved detection of severe storms using experimental fine-resolution WSR-88D measurements. Weather Forecast 20:3–14

    Google Scholar 

  • Browning KA, Collier CG (1989) Nowcasting of precipitation systems. Rev Geophys 27:345–370

    Google Scholar 

  • Calheiros RV, Zawadzki I (1987) Reflectivity-rain rate relationships for radar hydrology in Brazil. J Climate Appl Meteorol 26:118–132

    Google Scholar 

  • Campos E, Zawadzki I (2000) Instrumental uncertainties in Z–R relations. J Appl Meteorol 39:1088–1102

    Google Scholar 

  • Campos EF, Zawadzki I, Petitdidier M, Fernandez W (2006) Measurement of raindrop size distributions in tropical rain at Costa Rica. J Hydrol 328:98–109

    Google Scholar 

  • Capsoni C, D’Amico M, Tarsi T (2001) Statistical characterization of path attenuation of radar signals at C band. J Atmos Ocean Technol 18:609–615

    Google Scholar 

  • Carpenter TM, Georgakakos KP (2006a) Discretization scale dependencies of the ensemble flow range versus catchment area relationship in distributed hydrologic modeling. J Hydrol 328:242–257

    Google Scholar 

  • Carpenter TM, Georgakakos KP (2006b) Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. J Hydrol 329:174–185

    Google Scholar 

  • Chapon B, Delrieu G, Gosset M, Boudevillain B (2008) Variability of rain drop size distribution and its effect on the Z–R relationship: a case study for intense Mediterranean rainfall. Atmos Res 87:52–65

    Google Scholar 

  • Charalampidis D, Kasparis T, Jones WL (2002) Removal of nonprecipitation echoes in weather radar using multifractals and intensity. IEEE Trans Geosci Remote Sens 40:1121–1131

    Google Scholar 

  • Cho YH, Lee G, Kim KE, Zawadzki I (2006) Identification and removal of ground echoes and anomalous propagation using the characteristics of radar echoes. J Atmos Ocean Technol 23:1206–1222

    Google Scholar 

  • Chrisman JN, Rinderknecht DM, Hamilton RS (1995) WSR-88D clutter suppression and its impact on meteorological data interpretation. WSR-88D operational support facility. Operation Training Branch, Norman

    Google Scholar 

  • Chumchean S, Seed A, Sharma A (2003a) Effect of radar beam geometry on radar rainfall estimation, vol 282. IAHS-AISH Publication, pp 3–10

  • Chumchean S, Sharma A, Seed A (2003b) Radar rainfall error variance and its impact on radar rainfall calibration. Phys Chem Earth (B) 28:27–39

    Google Scholar 

  • Chumchean S, Seed A, Sharma A (2004) Application of scaling in radar reflectivity for correcting range-dependent bias in climatological radar rainfall estimates. J Atmos Ocean Technol 21:1545–1556

    Google Scholar 

  • Ciach GJ, Krajewski WF (1999a) On the estimation of radar rainfall error variance. Adv Water Resour 22:585–595

    Google Scholar 

  • Ciach GJ, Krajewski WF (1999b) Radar-rain gauge comparisons under observational uncertainties. J Appl Meteorol 38:1519–1525

    Google Scholar 

  • Ciach GJ, Krajewski WF, Smith JA (1997) Comments on “The window probability matching method for rainfall measurements with radar”. J Appl Meteorol 36:243–246

    Google Scholar 

  • Ciach GJ, Morrissey ML, Krajewski WF (2000) Conditional bias in radar rainfall estimation. J Appl Meteorol 39:1941–1946

    Google Scholar 

  • Ciach GJ, Krajewski WF, Villarini G (2007) Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data. J Hydrometeorol 8:1325–1347

    Google Scholar 

  • Cifelli R, Williams CR, Rajopadhyaya DK, Avery SK, Gage KS, May PT (2000) Drop-size distribution characteristics in tropical mesoscale convective systems. J Appl Meteorol 39:760–777

    Google Scholar 

  • Collier CG (1986a) Accuracy of rainfall estimates by radar. Part I: Calibration by telemetering raingauges. J Hydrol 83:207–223

    Google Scholar 

  • Collier CG (1986b) Accuracy of rainfall estimates by radar. Part II: Comparison with raingauge network. J Hydrol 83:225–235

    Google Scholar 

  • Collier CG (1996) Applications of Weather Radar Systems. New York

    Google Scholar 

  • Collier CG (1999) The impact of wind drift on the utility of very high spatial resolution radar data over urban areas. Phys Chem Earth Part B-Hydrol Oceans Atmos 24:889–893

    Google Scholar 

  • Collier CG (2009) On the propagation of uncertainty in weather radar estimates of rainfall through hydrological models. Meteorol Appl 16:35–40

    Google Scholar 

  • Creutin JD, Andrieu H, Faure D (1997) Use of a weather radar for the hydrology of a mountainous area. 2. Radar measurement validation. J Hydrol 193:26–44

    Google Scholar 

  • Crum TD, Saffle RE, Wilson JW (1998) An update on the NEXRAD program and future WSR-88D support to operations. Weather Forecast 13:253–262

    Google Scholar 

  • Cummings RJ, Upton GJG, Holt AR, Kitchen M (2009) Using microwave links to adjust the radar rainfall field. Adv Water Resour 32:1003–1010

    Google Scholar 

  • Cushmeer N (1999) WSR-88D rainfall estimates during tropical storm Nora. Western Region Technical Attachment, Las Vegas

    Google Scholar 

  • Dalezios NR, Kouwen N (1990) Radar signal interpretation in warm season rainstorms. Nord Hydrol 21:47–64

    Google Scholar 

  • Delrieu G, Creutin JD, Saintandre I (1991) Mean K-R relationships: practical results for typical weather radar wavelengths. J Atmos Ocean Technol 8:467–476

    Google Scholar 

  • Delrieu G, Creutin JD, Andrieu H (1995) Simulation of radar mountain returns using a digitized terrain model. J Atmos Ocean Technol 12:1038–1049

    Google Scholar 

  • Delrieu G, Caoudal S, Creutin JD (1997) Feasibility of using mountain return for the correction of ground-based X-band weather radar data. J Atmos Ocean Technol 14:368–385

    Google Scholar 

  • Delrieu G, Hucke L, Creutin JD (1999) Attenuation in rain for X- and C-band weather radar systems: sensitivity with respect to the drop size distribution. J Appl Meteorol 38:57–68

    Google Scholar 

  • Delrieu G, Andrieu H, Creutin JD (2000) Quantification of path-integrated attenuation for X- and C-band weather radar systems operating in Mediterranean heavy rainfall. J Appl Meteorol 39:840–850

    Google Scholar 

  • Dinku T, Anagnostou EN, Borga M (2002) Improving radar-based estimation of rainfall over complex terrain. J Appl Meteorol 41:1163–1178

    Google Scholar 

  • Donavon RA, Jungbluth KA (2007) Evaluation of a technique for radar identification of large hail across the upper midwest and central plains of the United States. Weather Forecast 22:244–254

    Google Scholar 

  • Dotzek N, Beheng KD (2001) The influence of deep convective motions on the variability of Z–R relations. Atmos Res 59–60:15–39

    Google Scholar 

  • Doviak RJ, Zrnic D (2006) Doppler radar and weather observations. Dover Publications, San Diego, 562 pp

  • Doviak RJ, Bringi V, Ryzhkov A, Zahrai A, Zrnic D (2000) Considerations for polarimetric upgrades to operational WSR-88D radars. J Atmos Ocean Technol 17:257–278

    Google Scholar 

  • Fabry F, Zawadzki I (1995) Long-term observations of the melting layer of precipitation and their interpretation. J Atmos Sci 52:838–851

    Google Scholar 

  • Fabry F, Austin GL, Tees D (1992) The accuracy of rainfall estimates by radar as a function of range. Quart J Royal Meteorol Soc 118:435–453

    Google Scholar 

  • Fabry F, Bellon A, Duncan MR, Austin GL (1994) High resolution rainfall measurements by radar for very small basins: the sampling problem reexamined. J Hydrol 161:415–428

    Google Scholar 

  • Fast JD, Newsom RK, Allwine KJ, Xu Q, Zhang PF, Copeland J, Sun JZ (2008) An evaluation of two NEXRAD wind retrieval methodologies and their use in atmospheric dispersion models. J Appl Meteorol Climatol 47:2351–2371

    Google Scholar 

  • Faure D, Delrieu G, Tabary P, Du Chatelet JP, Guimera M (2005) Application of the hydrologic visibility concept to estimate rainfall measurement quality of two planned weather radars. Atmos Res 77:232–246

    Google Scholar 

  • French MM, Bluestein HB, Dowell DC, Wicker LJ, Kramar MR, Pazmany AL (2008) High-resolution, mobile Doppler radar observations of cyclic mesocyclogenesis in a supercell. Mon Weather Rev 136:4997–5016

    Google Scholar 

  • Friedrich K, Hagen M, Einfalt T (2006) A quality control concept for radar reflectivity, polarimetric parameters, and Doppler velocity. J Atmos Ocean Technol 23:865–887

    Google Scholar 

  • Friedrich K, Germann U, Gourley JJ, Tabary P (2007) Effects of radar beam shielding on rainfall estimation for the polarimetric C-band radar. J Atmos Ocean Technol 24:1839–1859

    Google Scholar 

  • Friedrich K, Germann U, Tabary P (2009) Influence of ground clutter contamination on polarimetric radar parameters. J Atmos Ocean Technol 26:251–269

    Google Scholar 

  • Fulton RA (1999) Sensitivity of WSR-88D rainfall estimates to the rain-rate threshold and rain gauge adjustment: a flash flood case study. Weather Forecast 14:604–624

    Google Scholar 

  • Fulton RA, Breidenbach JP, Seo DJ, Miller DA, O’Bannon T (1998) The WSR-88D rainfall algorithm. Weather Forecast 13:377–395

    Google Scholar 

  • Gabella M, Perona G (1998) Simulation of the orographic influence on weather radar using a geometric-optics approach. J Atmos Ocean Technol 15:1485–1494

    Google Scholar 

  • Gabella M, Joss J, Perona G, Galli G (2001) Accuracy of rainfall estimates by two radars in the same Alpine environment using gage adjustment. J Geophys Res Atmos 106:5139–5150

    Google Scholar 

  • Germann U (1999) Radome attenuation–A serious limiting factor for quantitative radar measurements. Meteorol Z 8:85–90

    Google Scholar 

  • Germann U, Joss J (2002) Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. J Appl Meteorol 41:542–557

    Google Scholar 

  • Germann U, Joss J (2004) Operational measurement of precipitation in mountainous terrain. In: Meischner P (ed) Weather radar—principles and advanced applications. Springer, Berlin, pp 52–77

  • Germann U, Galli G, Boscacci M, Bolliger M (2006) Radar precipitation measurement in a mountainous region. Quart J Royal Meteorol Soc 132:1669–1692

    Google Scholar 

  • Germann U, Berenguer M, Sempere-Torres D, Zappa M (2009) REAL-ensemble radar precipitation estimation for hydrology in a mountainous region. Quart J Royal Meteorol Soc 135:445–456

    Google Scholar 

  • Giangrande SE, Ryzhkov AV (2008) Estimation of rainfall based on the results of polarimetric echo classification. J Appl Meteorol Climatol 47:2445–2462

    Google Scholar 

  • Giangrande SE, Krause JM, Ryzhkov AV (2008) Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J Appl Meteorol Climatol 47:1354–1364

    Google Scholar 

  • Glitto P, Choy LB (1997) A comparison of WSR-88D storm total precipitation performance during two tropical systems following changes to the multiplicative bias and upper reflectivity threshold. Weather Forecast 12:459–471

    Google Scholar 

  • Gorgucci E, Baldini L (2007) Attenuation and differential attenuation correction of C-band radar observations using a fully self-consistent methodology. IEEE Geosci Remote Sens Lett 4:326–330

    Google Scholar 

  • Gorgucci E, Scarchilli G, Chandrasekar V (1999) A procedure to calibrate multiparameter weather radar using properties of the rain medium. IEEE Trans Geosci Remote Sens 37:269–276

    Google Scholar 

  • Gourley JJ, Calvert CM (2003) Automated detection of the bright band using WSR-88D data. Weather Forecast 18:585–599

    Google Scholar 

  • Gourley JJ, Maddox RA, Howard KW, Burgess DW (2002) An exploratory multisensor technique for quantitative estimation of stratiform rainfall. J Hydrometeorol 3:166–180

    Google Scholar 

  • Gourley JJ, Illingworth AJ, Tabary P (2009) Absolute calibration of radar reflectivity using redundancy of the polarization observations and implied constraints on drop shapes. J Atmos Ocean Technol 26:689–703

    Google Scholar 

  • Gray WR, Seed AW (2000) The characterisation of orographic rainfall. Meteorol Appl 7:105–119

    Google Scholar 

  • Gray WR, Uddstrom MJ, Larsen HR (2002) Radar surface rainfall estimates using a typical shape function approach to correct for the variations in the vertical profile of reflectivity. Int J Remote Sens 23:2489–2504

    Google Scholar 

  • Grecu M, Krajewski WF (1999) Detection of anomalous propagation echoes in weather radar data using neural networks. IEEE Trans Geosci Remote Sens 37:287–296

    Google Scholar 

  • Grecu M, Krajewski WF (2000) An efficient methodology for detection of anomalous propagation echoes in radar reflectivity data using neural networks. J Atmos Ocean Technol 17:121–129

    Google Scholar 

  • Grum M, Kraemer S, Verworn H-R, Redder A (2005) Combined use of point rain gauges, radar, microwave link and level measurements in urban hydrological modelling. Atmos Res 77:313–321

    Google Scholar 

  • Gunn KLS, Marshall JS (1955) The effect of wind shear on falling precipitation. J Meteorol 12:339–349

    Google Scholar 

  • Habib E, Aduvala AV, Meselhe EA (2008a) Analysis of radar-rainfall error characteristics and implications for streamflow simulation uncertainty. Hydrol Sci J-J Des Sci Hydrol 53:568–587

    Google Scholar 

  • Habib E, Malakpet CG, Tokay A, Kucera PA (2008b) Sensitivity of streamflow simulations totemporal variability and estimation of Z–R relationships. J Hydrol Eng 13:1177–1186

    Google Scholar 

  • Hardaker PJ, Auer AH (1994) The separation of rain and hail using single polarization radar echoes and IR cloud-top temperatures. Meteorol Appl 1:201–204

    Google Scholar 

  • Hardaker PJ, Holt AR, Collier CG (1995) A melting-layer model and its use in correcting for the bright band in single-polarization radar echoes. Quart J Royal Meteorol Soc 121:495–525

    Google Scholar 

  • Harrison DL, Driscoll SJ, Kitchen M (2000) Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorol Appl 7:135–144

    Google Scholar 

  • Harrold TW, English EJ, Nicholas CA (1974) The accuracy of radar-derived rainfall measurements in hilly terrain. Quart J Royal Meteorol Soc 100:331–350

    Google Scholar 

  • Heinselman PL, Ryzhkov AV (2006) Validation of polarimetric hail detection. Weather Forecast 21:839–850

    Google Scholar 

  • Hitschfeld W, Bordan J (1954) Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J Meteorol 11:58–67

    Google Scholar 

  • Hunter SM (1996) WSR-88D radar rainfall estimation: capabilities, limitations and potential improvements. Natl Weather Dig 20(4):26–38

    Google Scholar 

  • Jordan P, Seed A, Austin G (2000) Sampling errors in radar estimates of rainfall. J Geophys Res Atmos 105:2247–2257

    Google Scholar 

  • Jordan PW, Seed AW, Weinmann PE (2003) A stochastic model of radar measurement errors in rainfall accumulations at catchment scale. J Hydrometeorol 4:841–855

    Google Scholar 

  • Joss J, Lee R (1995) The application of radar-gauge comparisons to operational precipitation profile corrections. J Appl Meteorol 34:2612–2630

    Google Scholar 

  • Joss J, Waldvogel A (1990) Precipitation measurements and hydrology. Radar in Meteorology, Boston

    Google Scholar 

  • Kessinger C, Scott E, Van Andel J, Ferraro D, Keeler RJ (1998) NEXRAD data quality optimization. NCAR annual report FY98

  • Kim DS, Maki M, Lee DI (2008) Correction of X-band radar reflectivity and differential reflectivity for rain attenuation using differential phase. Atmos Res 90:1–9

    Google Scholar 

  • Kitchen M (1997) Towards improved radar estimates of surface precipitation rate at long range. Quart J Royal Meteorol Soc 123:145–163

    Google Scholar 

  • Kitchen M, Jackson PM (1993) Weather radar performance at long range–Simulated and observed. J Appl Meteorol 32:975–985

    Google Scholar 

  • Kitchen M, Brown R, Davies AG (1994) Real-time correction of weather radar for the effects of bright band, range and orographic growth in widespread precipitation. Quart J Royal Meteorol Soc 120:1231–1254

    Google Scholar 

  • Krajewski WF (1987) Radar rainfall data quality control by the influence function method. Water Resour Res 23:837–844

    Google Scholar 

  • Krajewski WF, Ciach GJ (2003) Towards probabilistic quantitative precipitation WSR-88D agorithms: preliminary studies and problem formulation. NWS Office of Hydrologic Development, Silver Spring

    Google Scholar 

  • Krajewski WF, Smith JA (1991) On the estimation of climatological Z–R relationships. J Appl Meteorol 30:1436–1445

    Google Scholar 

  • Krajewski WF, Smith JA (2002) Radar hydrology: rainfall estimation. Adv Water Resour 25:1387–1394

    Google Scholar 

  • Krajewski WF, Vignal B (2001) Evaluation of anomalous propagation echo detection in WSR-88D data: a large sample case study. J Atmos Ocean Technol 18:807–814

    Google Scholar 

  • Krajewski WF, Kruger A, Caracciolo C, Gole P, Barthes L, Creutin JD, Delahaye JY, Nikolopoulos EI, Ogden F, Vinson JP (2006a) DEVEX-disdrometer evaluation experiment: basic results and implications for hydrologic studies. Adv Water Resour 29:311–325

    Google Scholar 

  • Krajewski WF, Ntelekos AA, Goska R (2006b) A GIS-based methodology for the assessment of weather radar beam blockage in mountainous regions: two examples from the US NEXRAD network. Comput Geosci 32:283–302

    Google Scholar 

  • Krajewski WF, Villarini G, Smith JA (2009) Radar-rainfall uncertainties: where are we after thirty years of effort? Bull Am Meteorol Soc (Submitted)

  • Kucera PA, Krajewski WF, Young CB (2004) Radar beam occultation studies using GIS and DEM technology: an example study of Guam. J Atmos Ocean Technol 21:995–1006

    Google Scholar 

  • Kummerow C, Simpson J, Thiele O, Barnes W, Chang ATC, Stocker E, Adler RF, Hou A, Kakar R, Wentz F, Ashcroft P, Kozu T, Hong Y, Okamoto K, Iguchi T, Kuroiwa H, Im E, Haddad Z, Huffman G, Ferrier B, Olson WS, Zipser E, Smith EA, Wilheit TT, North G, Krishnamurti T, Nakamura K (2000) The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982

    Google Scholar 

  • Kurri M, Huuskonen A (2008) Measurements of the transmission loss of a radome at different rain intensities. J Atmos Ocean Technol 25:1590–1599

    Google Scholar 

  • Lack SA, Fox NI (2005) Errors in surface rainfall rates retrieved from radar due to wind-drift. Atmos Sci Lett 6:71–77

    Google Scholar 

  • Lack SA, Fox NI (2007) An examination of the effect of wind-drift on radar-derived surface rainfall estimations. Atmos Res 85:217–229

    Google Scholar 

  • Lakshmanan V, Fritz A, Smith T, Hondl K, Stumpf G (2007) An automated technique to quality control radar reflectivity data. J Appl Meteorol Climatol 46:288–305

    Google Scholar 

  • Lang TJ, Nesbitt SW, Carey LD (2009) On the correction of partial beam blockage in polarimetric radar data. J Atmos Ocean Technol 26:943–957

    Google Scholar 

  • Lee G, Zawadzki I (2005a) Variability of drop size distributions: noise and noise filtering in disdrometric data. J Appl Meteorol 44:634–652

    Google Scholar 

  • Lee G, Zawadzki I (2005b) Variability of drop size distributions: time-scale dependence of the variability and its effects on rain estimation. J Appl Meteorol 44:241–255

    Google Scholar 

  • Lee GW, Zawadzki I (2006) Radar calibration by gage, disdrometer, and polarimetry: theoretical limit caused by the variability of drop size distribution and application to fast scanning operational radar data. J Hydrol 328:83–97

    Google Scholar 

  • Lee WC, Harasti PR, Bell M, Jou BJD, Chang MH (2006) Doppler velocity signatures of idealized elliptical vortices. Terr Atmos Ocean Sci 17:429–446

    Google Scholar 

  • Leijnse H, Uijlenhoet R, Stricker JNM (2007) Hydrometeorological application of a microwave link: 2. Precipitation. Water Resour Res 43:W04417. doi:10.1029/2006WR004989

  • Leijnse H, Uijlenhoet R, Stricker JNM (2008) Microwave link rainfall estimation: effects of link length and frequency, temporal sampling, power resolution, and wet antenna attenuation. Adv Water Resour 31:1481–1493

    Google Scholar 

  • Lewis HW, Harrison DL (2007) Assessment of radar data quality in upland catchments. Meteorol Appl 14:441–454

    Google Scholar 

  • Liu CY, Krajewski WF (1996) A comparison of methods for calculation of radar-rainfall hourly accumulations. Water Resour Bull 32:305–315

    Google Scholar 

  • Maddox RA, Zhang J, Gourley JJ, Howard KW (2002) Weather radar coverage over the contiguous United States. Weather Forecast 17:927–934

    Google Scholar 

  • Maki M, Keenan TD, Sasaki Y, Nakamura K (2001) Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J Appl Meteorol 40:1393–1412

    Google Scholar 

  • Mandapaka PV, Krajewski WF, Ciach GJ, Villarini G, Smith JA (2009) Estimation of radar-rainfall error spatial correlation. Adv Water Resour 32:1020–1030

    Google Scholar 

  • Manz A, Smith AH, Hardaker PJ (2000) Comparison of different methods of end to end calibration of the UK weather radar network. Phys Chem Earth (B) 25(10–12):1157–1162

    Google Scholar 

  • Marquis J, Richardson Y, Wurman J, Markowski P (2008) Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, Supercell of 30 April 2000. Mon Weather Rev 136:5017–5043

    Google Scholar 

  • Marshall JS, Palmer WM (1948) The distribution of raindrops with size. J Meteorol 5:165–166

    Google Scholar 

  • Marshall JS, Hitschfeld W, Gunn KLS (1955) Advances in radar weather. In: Landsberg HE (ed) Advances in geophysics, vol 2. Academic Press Inc., New York

  • Martner BE, Yuter SE, White AB, Matrosov SY, Kingsmill DE, Ralph FM (2008) Raindrop size distributions and rain characteristics in California coastal rainfall for periods with and without a radar bright band. J Hydrometeorol 9:408–425

    Google Scholar 

  • Marzano FS, Vulpiani G, Picciotti E (2004) Rain field and reflectivity vertical profile reconstruction from C-band radar volumetric data. IEEE Trans Geosci Remote Sens 42(5):1033–1046

    Google Scholar 

  • Medlin JM, Kimball SK, Blackwell KG (2007) Radar and rain gauge analysis of the extreme rainfall during hurricane Danny’s (1997) landfall. Mon Weather Rev 135:1869–1888

    Google Scholar 

  • Meischner P (2003) Weather radar—Principles and advances application. Springer, Berlin, Germany

    Google Scholar 

  • Meischner P, Collier C, Illingworth A, Joss J, Randeu W (1997) Advanced weather radar systems in Europe: the COST 75 action. Bull Am Meteorol Soc 78:1411–1430

    Google Scholar 

  • Michelson DB, Sunhede D (2004) Spurious weather radar echo identification and removal using multisource temperature information. Meteorol Appl 11:1–14

    Google Scholar 

  • Miriovsky BJ, Bradley AA, Eichinger WE, Krajewski WF, Kruger A, Nelson BR, Creutin J-D, Lapetite J-M, Lee GW, Zawadzki I, Ogden FL (2004) An empirical study of small-scale variability of radar reflectivity using disdrometer observations. J Appl Meteorol 43:106–118

    Google Scholar 

  • Mittermaier MP, Illingworth AJ (2003) Comparison of model-derived and radar-observed freezing-level heights: implications for vertical reflectivity profile-correction schemes. Quart J Royal Meteorol Soc 129:83–95

    Google Scholar 

  • Moisseev DN, Chandrasekar V (2009) Polarimetric spectral filter for adaptive clutter and noise suppression. J Atmos Ocean Technol 26:215–228

    Google Scholar 

  • Morin E, Krajewski WF, Goodrich DC, Gao XG, Sorooshian S (2003) Estimating rainfall intensities from weather radar data: the scale-dependency problem. J Hydrometeorol 4:782–797

    Google Scholar 

  • Moszkowicz S, Ciach GJ, Krajewski WF (1994) Statistical detection of anomalous propagation in radar reflectivity patterns. J Atmos Ocean Technol 11:1026–1034

    Google Scholar 

  • Neyman LM (1996) Initial comparison of WSR-88D precipitation products and rain gage precipitation for northwestern California. Western Region Technical Attachment, Eureka

    Google Scholar 

  • Nicol JC, Austin GL (2003) Attenuation correction constraint for single-polarisation weather radar. Meteorol Appl 10:345–354

    Google Scholar 

  • Pamment JA, Conway BJ (1998) Objective identification of echoes due to anomalous propagation in weather radar data. J Atmos Ocean Technol 15:98–113

    Google Scholar 

  • Pankiewicz GS, Johnson CJ, Harrison DL (2001) Improving radar observations of precipitation with a meteosat neural network classifier. Meteorol Atmos Phys 76:9–22

    Google Scholar 

  • Pellarin T, Delrieu G, Saulnier GM, Andrieu H, Vignal B, Creutin JD (2002) Hydrologic visibility of weather radar systems operating in mountainous regions: case study for the Ardeche Catchment (France). J Hydrometeorol 3:539–555

    Google Scholar 

  • Petersen WA, Carey LD, Rutledge SA, Knievel JC, Doesken NJ, Johnson RH, McKee TB, Vonder Haar T, Weaver JF (1999) Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull Am Meteorol Soc 80:191–216

    Google Scholar 

  • Purdy JC, Austin GL, Seed AW, Cluckie ID (2005) Radar evidence of orographic enhancement due to the seeder feeder mechanism. Meteorol Appl 12:199–206

    Google Scholar 

  • Rahimi AR, Upton GJG, Holt AR (2004) Dual-frequency links–a complement to gauges and radar for the measurement of rain. J Hydrol 288:3–12

    Google Scholar 

  • Ricks R, Graschel J, Jones E (1995) A comparison of adjacent WSR-88D precipitation estimates along the Mississippi gulf coast. Lower Mississippi River Forecast Center, Slidell

    Google Scholar 

  • Rico-Ramirez MA, Cluckie ID (2007) Bright-band detection from radar vertical reflectivity profiles. Int J Remote Sens 28(18):4013–4025

    Google Scholar 

  • Rincon RF, Lang RH (2002) Microwave link dual-wavelength measurements of path-average attenuation for the estimation of drop size distributions and rainfall. IEEE Trans Geosci Remote Sens 40:760–770

    Google Scholar 

  • Rinehart RE (1978) On the use of ground return targets for radar reflectivity factor calibration checks. J Appl Meteorol 17:1342–1350

    Google Scholar 

  • Rinehart RE (2004) Radar for meteorologists. Rinehart Publications, Grand Forks

    Google Scholar 

  • Rosenfeld D, Amitai E (1998) Comparison of WPMM versus regression for evaluating Z–R relationships. J Appl Meteorol 37:1241–1249

    Google Scholar 

  • Rosenfeld D, Wolff DB, Atlas D (1993) General probability-matched relations between radar reflectivity and rain rate. J Appl Meteorol 32:50–72

    Google Scholar 

  • Rosenfeld D, Wolff DB, Amitai E (1994) The window probability matching method for rainfall measurements with radar. J Appl Meteorol 33:682–693

    Google Scholar 

  • Rosenfeld D, Amitai E, Wolff DB (1995) Improved accuracy of radar WPMM estimated rainfall upon application of objective classification criteria. J Appl Meteorol 34:212–223

    Google Scholar 

  • Ryzhkov A, Zrnic DS (1995) Precipitation and attenuation measurements at a 10-cm wavelength. J Appl Meteorol 34:2121–2134

    Google Scholar 

  • Ryzhkov AV, Zrnic DS (1998a) Discrimination between rain and snow with a polarimetric radar. J Appl Meteorol 37:1228–1240

    Google Scholar 

  • Ryzhkov AV, Zrnic DS (1998b) Polarimetric rainfall estimation in the presence of anomalous propagation. J Atmos Ocean Technol 15:1320–1330

    Google Scholar 

  • Ryzhkov AV, Giangrande SE, Melnikov VM, Schuur TJ (2005) Calibration issues of dual-polarization radar measurements. J Atmos Ocean Technol 22:1138–1155

    Google Scholar 

  • Sanchez-Diezma R, Zawadzki I, Sempere-Torres D (2000) Identification of the bright band through the analysis of volumetric radar data. J Geophys Res 105(D2):2225–2236

    Google Scholar 

  • Sauvageot H (1992) Radar meteorology. Artech, Boston

  • Sauvageot H (1994) Rainfall measurement by radar: a review. Atmos Res 35:27–54

    Google Scholar 

  • Scarchilli G, Gorgucci E, Chandrasekar V, Seliga TA (1993) Rainfall estimation using polarimetric techniques at C-band frequencies. J Appl Meteorol 32:1150–1160

    Google Scholar 

  • Scarchilli G, Gorgucci E, Chandrasekar V, Dobaie A (1996) Self-consistency of polarization diversity measurement of rainfall. IEEE Trans Geosci Remote Sens 34:22–26

    Google Scholar 

  • Seed A, Nichol J, Austin G, Stow CD, Bradley SG (1996) The impact of radar and rain gauge sampling errors when calibrating a weather radar. Meteorol Appl 3:43–52

    Google Scholar 

  • Seliga TA, Bringi VN, Alkhatib HH (1981) A preliminary study of comparative measurements of rainfall rate using the differential reflectivity radar technique and a raingage network. J Appl Meteorol 20:1362–1368

    Google Scholar 

  • Seo DJ, Breidenbach J, Fulton R, Miller D, O’Bannon T (2000) Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity. J Hydrometeorol 1:222–240

    Google Scholar 

  • Serafin RJ, Wilson JW (2000) Operational weather radar in the United States: progress and opportunity. Bull Am Meteorol Soc 81:501–518

    Google Scholar 

  • Serrar S, Delrieu G, Creutin J-D, Uijlenhoet R (2000) Mountain reference technique: use of mountain returns to calibrate weather radars operating at attenuating wavelengths. J Geophys Res 105(D2):2281–2290

    Google Scholar 

  • Sieck LC, Burges SJ, Steiner M (2007) Challenges in obtaining reliable measurements of point rainfall. Water Resour Res 43:23

    Google Scholar 

  • Silberstein DS, Wolff DB, Marks DA (2008) Ground clutter as a monitor of radar stability at Kwajalein, RMI. J Atmos Ocean Technol 25:2037–2045

    Google Scholar 

  • Simpson J, Kummerow C, Tao WK, Adler RF (1996) On the tropical rainfall measuring mission (TRMM). Meteorol Atmos Phys 60:19–36

    Google Scholar 

  • Smith CJ (1986) The reduction of errors caused by bright bands in quantitative rainfall measurements made using radar. J Atmos Ocean Technol 3:129–141

    Google Scholar 

  • Smith PL (1990) Precipitation measurements and hydrology: panel report. Radar in Meteorology, Boston

    Google Scholar 

  • Smith JA (1993) Marked point process models of raindrop-size distributions. J Appl Meteorol 32:284–296

    Google Scholar 

  • Smith PL (1998) On the minimum useful elevation angle for weather surveillance radar scans. J Atmos Ocean Technol 15:841–843

    Google Scholar 

  • Smith JA, De Veaux RD (1994) A stochastic model relating rainfall intensity to raindrop process. Water Resour Res 30:651–664

    Google Scholar 

  • Smith JA, Krajewski WF (1993) A modeling study of rainfall rate-reflectivity relationships. Water Resour Res 29:2505–2514

    Google Scholar 

  • Smith PL, Myers CG, Orville HD (1975) Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation. J Appl Meteorol 14:1156–1165

    Google Scholar 

  • Smith JA, Seo DJ, Baeck ML, Hudlow MD (1996) An intercomparison study of NEXRAD precipitation estimates. Water Resour Res 32:2035–2045

    Google Scholar 

  • Smith JA, Baeck ML, Morrison JE, Sturdevant-Rees P (2000) Catastrophic rainfall and flooding in Texas. J Hydrometeorol 1:5–25

    Google Scholar 

  • Smith JA, Hui E, Steiner M, Baeck ML, Krajewski WF, Ntelekos AA (2009) Variability of rainfall rate and raindrop size distributions in heavy rain. Water Resour Res 45:12

    Google Scholar 

  • Smyth TJ, Illingworth AJ (1998) Radar estimates of rainfall rates at the ground in bright band and non-bright band events. Quart J Royal Meteorol Soc 124:2417–2434

    Google Scholar 

  • Steiner M, Smith JA (2000) Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. J Appl Meteorol 39:1923–1940

    Google Scholar 

  • Steiner M, Smith JA (2002) Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J Atmos Ocean Technol 19:673–686

    Google Scholar 

  • Steiner M, Smith JA (2004) Scale dependence of radar-rainfall rates—An assessment based on raindrop spectra. J Hydrometeorol 5:1171–1180

    Google Scholar 

  • Steiner M, Smith JA, Burges SJ, Alonso CV, Darden RW (1999) Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resour Res 35:2487–2503

    Google Scholar 

  • Straka JM, Zrnic DS, Ryzhkov AV (2000) Bulk hydrometeor classification and quantification using polarimetric radar data: synthesis of relations. J Appl Meteorol 39:1341–1372

    Google Scholar 

  • Tabary P (2007) The new French operational radar rainfall product. Part I: Methodology. Weather Forecast 22:393–408

    Google Scholar 

  • Tabary P, Desplats J, Do Khac K, Eideliman F, Gueguen C, Heinrich JC (2007) The new French operational radar rainfall product. Part II: Validation. Weather Forecast 22:409–427

    Google Scholar 

  • Tees D, Austin GL (1991) The effect of range on the radar measurement of rainfall. In: Cluckie ID, Collier GC (eds) Hydrological applications of weather radar. Ellis Horwood, pp 296–304

  • Tokay A, Short DA (1996) Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteorol 35:355–371

    Google Scholar 

  • Tokay A, Kruger A, Krajewski WF (2001) Comparison of drop size distribution measurements by impact and optical disdrometers. J Appl Meteorol 40:2083–2097

    Google Scholar 

  • Tokay A, Bashor PG, Wolff KR (2005) Error characteristics of rainfall measurements by collocated Joss-Waldvogel disdrometers. J Atmos Ocean Technol 22:513–527

    Google Scholar 

  • Tokay A, Bashor PG, Habib E, Kasparis T (2008) Raindrop size distribution measurements in tropical cyclones. Mon Weather Rev 136:1669–1685

    Google Scholar 

  • Torres SM, Zrnic DS (1999) Ground clutter canceling with a regression filter. J Atmos Ocean Technol 16:1364–1372

    Google Scholar 

  • Uijlenhoet R (2001) Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology. Hydrol Earth Syst Sci 5:615–627

    Article  Google Scholar 

  • Uijlenhoet R, Berne A (2008) Stochastic simulation experiment to assess radar rainfall retrieval uncertainties associated with attenuation and its correction. Hydrol Earth Syst Sci 12:587–601

    Article  Google Scholar 

  • Uijlenhoet R, Steiner M, Smith JA (2003) Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J Hydrometeorol 4:43–61

    Google Scholar 

  • Ulbrich CW, Atlas D (2002) On the separation of tropical convective and stratiform rains. J Appl Meteorol 41:188–195

    Google Scholar 

  • Ulbrich CW, Atlas D (2008) Radar measurement of rainfall with and without polarimetry. J Appl Meteorol Climatol 47:1929–1939

    Google Scholar 

  • Ulbrich CW, Lee LG (1999) Rainfall measurement error by WSR-88D radars due to variations in Z–R law parameters and the radar constant. J Atmos Ocean Technol 16:1017–1024

    Google Scholar 

  • Ulbrich CW, Miller NE (2001) Experimental test of the effects of Z–R law variations on comparison of WSR-88D rainfall amounts with surface rain gauge and disdrometer data. Weather Forecast 16:369–374

    Google Scholar 

  • Upton GJG, Holt AR, Cummings RJ, Rahimi AR, Goddard JWF (2005) Microwave links: the future for urban rainfall measurement? Atmos Res 77:300–312

    Google Scholar 

  • Vieux BE, Bedient PB (1998) Estimation of rainfall for flood prediction from WSR-88D reflectivity: a case study, 17–18 October 1994. Weather Forecast 13:407–415

    Google Scholar 

  • Vignal B, Krajewski WF (2001) Large-sample evaluation of two methods to correct range-dependent error for WSR-88D rainfall estimates. J Hydrometeorol 2:490–504

    Google Scholar 

  • Vignal B, Andrieu H, Creutin JD (1999) Identification of vertical profiles of reflectivity from volume scan radar data. J Appl Meteorol 38:1214–1228

    Google Scholar 

  • Vignal B, Galli G, Joss J, Germann U (2000) Three methods to determine profiles of reflectivity from volumetric radar data to correct precipitation estimates. J Appl Meteorol 39:1715–1726

    Google Scholar 

  • Villarini G, Krajewski WF (2009a) Empirically based modelling of radar-rainfall uncertainties for a C-band radar at different time scales. Quart J Royal Meteorol Soc (in press) (10.1002/qj.454)

  • Villarini G, Krajewski WF (2009b) Inference of spatial scaling properties of rainfall: impact of radar-rainfall estimation uncertainties. IEEE Geosci Remote Sens Lett. doi:10.1109/LGRS.2009.2025891

  • Villarini G, Krajewski WF (2009c) Sensitivity studies of the models of radar-rainfall uncertainties. J Appl Meteorol Climatol (Submitted)

  • Villarini G, Ciach GJ, Krajewski WF, Nordstrom KM, Gupta VK (2007) Effects of systematic and random errors on the spatial scaling properties in radar-estimated rainfall. In: Tsonis AA, Elsner J (eds) Nonlinear dynamics in geosciences. Springer, Berlin, pp 37–51

  • Villarini G, Mandapaka PV, Krajewski WF, Moore RJ (2008) Rainfall and sampling uncertainties: a rain gauge perspective. J Geophys Res Atmos 113:12

    Google Scholar 

  • Villarini G, Krajewski WF, Ciach GJ, Zimmerman DL (2009a) Product-error-driven generator of probable rainfall conditioned on WSR-88D precipitation estimates. Water Resour Res 45:11

    Google Scholar 

  • Villarini G, Krajewski WF, Smith JA (2009b) New paradigm for statistical validation of satellite precipitation estimates: application to a large sample of the TMPA 0.25-degree three hourly estimates over Oklahoma. J Geophys Res Atmos 114:12

    Google Scholar 

  • Vulpiani G, Marzano FS, Chandrasekar V, Lim S (2005) Constrained iterative technique with embedded neural network for dual-polarization radar correction of rain path attenuation. IEEE Trans Geosci Remote Sens 43:2305–2314

    Google Scholar 

  • Vulpiani G, Tabary P, Du Chatelet JP, Marzano FS (2008) Comparison of advanced radar polarimetric techniques for operational attenuation correction at C band. J Atmos Ocean Technol 25:1118–1135

    Google Scholar 

  • Westrick KJ, Mass CF, Colle BA (1999) The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull Am Meteorol Soc 80:2289–2298

    Google Scholar 

  • White AB, Gottas DJ, Strem ET, Ralph FM, Neiman PJ (2002) An automated brightband height detection algorithm for use with Doppler radar spectral moments. J Atmos Ocean Technol 19:687–697

    Google Scholar 

  • Whiton RC, Smith PL, Bigler SG, Wilk KE, Harbuck AC (1998a) History of operational use of weather radar by US weather services. Part I: The pre-NEXRAD era. Weather Forecast 13:219–243

    Google Scholar 

  • Whiton RC, Smith PL, Bigler SG, Wilk KE, Harbuck AC (1998b) History of operational use of weather radar by US weather services. Part II: Development of operational Doppler weather radars. Weather Forecast 13:244–252

    Google Scholar 

  • Williams CR, Kruger A, Gage KS, Tokay A, Cifelli R, Krajewski WF, Kummerow C (2000) Comparison of simultaneous rain drop size distributions estimated from two surface disdrometers and a UHF profiles. Geophys Res Lett 27:1763–1766

    Google Scholar 

  • Williams CR, Gage KS, Clark W, Kucera P (2005) Monitoring the reflectivity calibration of a scanning radar using a profiling radar and a disdrometer. J Atmos Ocean Technol 22:1004–1018

    Google Scholar 

  • Willis PT, Tattelman P (1989) Drop-size distributions associated with intense rainfall. J Appl Meteorol 28:3–15

    Google Scholar 

  • Wilson JW, Brandes EA (1979) Radar measurement of rainfall–A summary. Bull Am Meteorol Soc 60:1048–1058

    Google Scholar 

  • Wood VT, Brown RA, Vasiloff SV (2003) Improved detection using negative elevation angles for mountaintop WSR-88Ds. Part II: Simulations of the three radars covering Utah. Weather Forecast 18:393–403

    Google Scholar 

  • Young CB, Nelson BR, Bradley AA, Smith JA, Peters-Lidard CD, Kruger A, Baeck ML (1999) An evaluation of NEXRAD precipitation estimates in complex terrain. J Geophys Res Atmos 104:19691–19703

    Google Scholar 

  • Yuter SE, Houze RA (1997) Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. J Appl Meteorol 36:847–867

    Google Scholar 

  • Zawadzki I (1984) Factors affecting the precision of radar measurement of rain. 22nd conference on radar meteorology, Zurich, Switzerland

  • Zhang Y, Adams T, Bonta JV (2007) Subpixel-scale rainfall variability and the effects on separation of radar and gauge rainfall errors. J Hydrometeorol 8:1348–1363

    Google Scholar 

  • Zhao QY, Cook J, Xu Q, Harasti PR (2006) Using radar wind observations to improve mesoscale numerical weather prediction. Weather Forecast 21:502–522

    Google Scholar 

  • Zhao QY, Cook J, Xu Q, Harasti PR (2008) Improving short-term storm predictions by assimilating both radar radial-wind and reflectivity observations. Weather Forecast 23:373–391

    Google Scholar 

  • Zinevich A, Alpert P, Messer H (2008) Estimation of rainfall fields using commercial microwave communication networks of variable density. Adv Water Resour 31:1470–1480

    Google Scholar 

  • Zrnic DS (1996) Weather radar polarimetry—Trends toward operational applications. Bull Am Meteorol Soc 77:1529–1534

    Google Scholar 

  • Zrnic DS, Ryzhkov AV (1999) Polarimetry for weather surveillance radars. Bull Am Meteorol Soc 80:389–406

    Google Scholar 

  • Zrnic DS, Melnikov VM, Ryzhkov AV (2006) Correlation coefficients between horizontally and vertically polarized returns from ground clutter. J Atmos Ocean Technol 23:381–394

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge many helpful discussions with Dr. Grzegorz Ciach and Pradeep Mandapaka. The first author was supported by NASA Headquarters under the Earth Science Fellowship Grant NNX06AF23H while a graduate student at the University of Iowa. The first author would also like to thank Mrs. C. Dewey at the University of Iowa for her help. The authors wish to thank four anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Villarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villarini, G., Krajewski, W.F. Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall. Surv Geophys 31, 107–129 (2010). https://doi.org/10.1007/s10712-009-9079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-009-9079-x

Keywords

Navigation