[go: up one dir, main page]

Skip to main content
Log in

Vague distance predicates

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

A formal theory of vague distance predicates is presented which combines a crisp region-based geometry with a theory of vague size predicates in a supervaluation-based formal framework. In the object language of the axiomatic theory, logical and semantic properties of vague distance predicates that are context- and domain-independent are formalized. Context and domain-dependent aspects are addressed in the meta-language of the theory by incorporating context- and domain-specific restrictions on the canonical interpretations. This allows to relate the ontological and qualitative analysis in the object language to numeric values as they are commonly used in scientific discourses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The notations U and S are adopted from [2].

  2. The Lebesgue measure is a formalization of the intuitive notion of the length of d if d is a regular subset of R 1. ∥d∥ is the area of d if d a regular subset of R 2 and ∥d∥ is the volume of d if d a regular subset of R 3.

  3. The operator I corresponds to Fine’s indefiniteness operator [23] and the operator D corresponds to Pinkal’s definiteness operator [35].

  4. Consider the distance predicates {C,c,M,f,F} between points of [24] and [28]. Roughly, for regions of the same size, S C l corresponds to C, SN corresponds to c, MA corresponds to M, and FA corresponds to the disjunction of f and F. Note, however that the definitions given here are for regions rather than for points and take the size of the regions into account. The predicate S C l roughly corresponds to the predicate ‘near’ of [40].

References

  1. Alexandroff P (1961) Elementary Concepts of Topology. Dover Publications, New York, NY

    Google Scholar 

  2. Bennett B (1998) Modal Semantics for Knowledge Bases dealing with Vague Concepts. In: Cohn AG, Schubert L, Shapiro S (eds) Principles of Knowledge Representation and Reasoning: Proceedings of the 6th International Conference (KR-98) pp 234–244. Morgan Kaufman

  3. Bennett B (2001) A Categorical Axiomatisation of Region-Based Geometry. Fuindamenta Informaticae 46:145–158

  4. Bennett B, Cohn AG, Torrini P, Hazarika SM (2000) A Foundation for Region-Based Qualitative Geometry. In: Horn W (ed) Proceedings of ECAI 2000, pp 204-208. Berlin, Germany

  5. Bittner T (2009) Logical properties of foundational mereogeometrical relations in bio-ontologies. Appl Ontol 4(2):109–138

    Google Scholar 

  6. Bittner T (2015) Vague mereogeometry

  7. Bittner T, Goldberg LJ (2007) The qualitative and time-dependent character of spatial relations in biomedical ontologies. Bioinformatics 23(13):1674–1682

    Article  Google Scholar 

  8. Bittner T (2011) Vague size predicates. Appl Ontol 6(4):317–343

    Google Scholar 

  9. Borgo S, Guarino N, Masolo C (1996) A Pointless Theory of Space Based on Strong Connection and Congruence. In: Aiello LC, Doyle J, Shapiro S (eds) Principles of Knowledge Representation and Reasoning (KR96). Morgan Kaufmann, pp 220–229

  10. Borgo S, Claudio M (2010) Full Mereogeometries. Review of Symbolic Logic 3(4):521–567

    Article  Google Scholar 

  11. Buchanan BG, Livingston G (2004) Toward Automated Discovery in the Biological Sciences. AI Mag 25(1):69–84

    Google Scholar 

  12. Burk F (1997) Lebesgue measure and integration: an introduction. Wiley-IEEE

  13. Casati R, Varzi AC (1999) Parts and Places. MIT Press, Cambridge MA

    Google Scholar 

  14. Casati R, Varzi AC (1994) Holes and Other Superficialities. MIT Press, Cambridge Mass

    Google Scholar 

  15. Clark BL (1981) A Calculus of Individuals Based on Connection. Notre Dame Journal of Formal Logic 22(3):204–218

    Article  Google Scholar 

  16. Clementini E, Di Felice P, Hernández D (1997) Qualitative Representation of Positional Information. Artif Intell 95(2):317–356

    Article  Google Scholar 

  17. Cohn AG, Bennett B, Goodday J, Gotts N (1997) Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. geoinformatica 1 (3):1–44

    Article  Google Scholar 

  18. Dague P (1993) Numeric reasoning with relative orders of magnitude. In: Proceedings of the National Conference on Artificial Intelligence, pp 541–547. AAAI press

  19. Dague P (1993) Symbolic reasoning with relative orders of magnitude. In: Proceedings 13th Intl. Joint Conference on Artificial Intelligence. Morgan Kaufmann, pp 1509–1515

  20. Davis E (1999) Order of Magnitude Comparisons of Distance. Journal of AI Research 10:1–38

    Article  Google Scholar 

  21. De Laguna T (1922) Point, Line, and Surface, as Sets of Solids. J Philos 19 (17):449–461

    Article  Google Scholar 

  22. Egenhofer MJ, Mark DM (1995) Naive Geography. In: Frank AU, Kuhn W (eds) Spatial Information Theory, A Theoretical Basis for GIS, Lecture Notes in Computer Science. Springer-Verlag

  23. Fine K (1975) Vagueness, Truth and Logic. Synthese 30:265–300

    Article  Google Scholar 

  24. Andrew F (1992) Qualitative Spatial Reasoning about Distances and Directions in Geographic Space. J Vis Lang Comput 3:343–371

    Article  Google Scholar 

  25. Gabbay DM, Hogger CJ, Robinson JA, Siekmann JH, editors (1995) Handbook of Logic in Artificial Intelligence and Logic Programming, vol 4. Oxford University Press

  26. Gerla G (1994) Pointless Geometries. In: Buekenhout F (ed) Handbook of Incidence Geometry, pp 1015–1031. Elsevier Science

  27. Goodman JE, Pollack R (1993) Allowable Sequences and Order Types in Discrete and Computational Geometry. In: Pach J (ed) New Trends in Discrete and Computational Geometry, volume 10 of Algorithms and Combinatorics, pp 103–134. Springer-Verlag

  28. Hernandez D, Clementini E, Di Felice P (1995) Qualitative Distances. In: Frank AU, Kuhn W (eds) Spatial Information Theory, A Theoretical Basis for GIS, LNCS, Semmering, Austria . Springer-Verlag

  29. Herskowitz A (1986) Language and Spatial Cognition - An Interdisciplinary Study of the Propositions in English. Studies in natural language processing Cambridge University Press

  30. Hughes GE, Cresswell MJ (2004) A new Introduction to Modal Logic. Routledge, London and New York

  31. Keefe R, Smith P, editors (1996) Vagueness: A Reader MIT Press

  32. Leonard HS, Goodman N (1940) The Calculus of Induviduals and its Uses. J Symb Log 5:45–55

    Article  Google Scholar 

  33. Mavrovouniotis M, Stephanopoulos G (1988) Formal order-of-magnitude reasoning in process engineering. Comput Chem Eng 12:867–881

    Article  Google Scholar 

  34. Pavelka J (1979) On fuzzy logic i - iii Mathematical Logic Quarterly

  35. Pinkal M (1995) Logic and Lexicon. The semantics of the indefinite. Kluwer Academic Publishers, Dordrecht

  36. Raiman O (1991) Order of magnitude reasoning. Artif Intell 51:11–38

    Article  Google Scholar 

  37. Randell DA, Cui Z, Cohn AG (1992) A Spatial Logic Based on Regions and Connection. In: Nebel B, Rich C, Swartout W (eds) Principles of Knowledge Representation and Reasoning. Proceedings of the Third International Conference (KR92), pp 165–176. Morgan Kaufmann

  38. Schlieder C (1995) Reasoning About Ordering. In: Frank AU, Kuhn W (eds) Spatial Information Theory - A Theoretical basis for GIS, volume 988 of LNCS, pp 341–349. Springer-Verlag, Semmering, Austria

  39. Schmidtke HR (2003) A Geometry for Places: Representing Extension and Extended Objects. In: Kuhn W, Worboys MF, Timpf S (eds) COSIT, volume 2825 of Lecture Notes in Computer Science, pp 221–238. Springer

  40. Schmidtke HR, Woo W (2007) A Size-Based Qualitative Approach to the Representation of Spatial Granularity. In: Veloso MM (ed) IJCAI, pp 563–568

  41. Simons P (1987) Parts, A Study in Ontology. Clarendon Press, Oxford

  42. Smith B (1995) Formal Ontology, Common Sense and Cognitive Science. Int J Hum Comput Stud 43:641–667

    Article  Google Scholar 

  43. Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector A, Rosse C (2005) Relations in Biomedical Ontologies. Genome Biol 6(5):r46

    Article  Google Scholar 

  44. Talmy L (1983) How Language Structures Space. In: Pick H, Acredolo L (eds) Spatial Orientation: Theory, Research, and Application. Plenum Press, New York, NY

  45. Tarski A (1956) Foundations of the Geometry of Solids. In: Logic, Semantic, Metamathematics. Oxford Clarendon Press

  46. Tobler W (1970) A Computer Movie Simulating Urban Growth in the Detroit Region. Econ Geogr 46(2):234–240

    Article  Google Scholar 

  47. Wilke G (2014) Equality in approximate tolerance geometry. In: Angelov PP et al (eds) Proceedings of the 7th International Conference Intelligent Systems IEEE IS’2014, vol 322, pp 365– 376. Springer

  48. Wilke G (2015) Granular geometry. In: Seising R, Trillas E, Kacprzyk J (eds) Towards the Future of Fuzzy Logic, volume 325 of Studies in Fuzziness and Soft Computing, pp 79–115. Springer

  49. Williamson T (1999) On the structure of higher-order vagueness. Mind 108:127–143

    Article  Google Scholar 

  50. Wos L, Overbeek R, Lusk R, Boyle J (1992) Automated Reasoning Introduction and Applications. McGraw-Hill

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bittner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bittner, T. Vague distance predicates. Geoinformatica 21, 209–229 (2017). https://doi.org/10.1007/s10707-016-0285-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-016-0285-7

Keywords

Navigation