[go: up one dir, main page]

Skip to main content
Log in

A congruence relation for sPBC

  • Published:
Formal Methods in System Design Aims and scope Submit manuscript

Abstract

In this paper we define a congruence relation for regular terms of sPBC (stochastic Petri Box Calculus), by means of which we identify those processes that have the same behaviour, not only in terms of the multiactions that they can perform, but also taking into account the stochastic information that they have associated. In order to define this equivalence relation we have to define an adequate semantics for the synchronization operator, as well as a new labelled transition system for regular terms of sPBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajmone Marsan M, Balbo G, Conte G, Donatelli S, Franceschinis G (1995) Modelling with generalized stochastic Petri nets. Wiley, New York

    MATH  Google Scholar 

  2. Baeten JCM (1992) The total order assumption In: Best E. (ed) Proceedings of the workshop “What good is partial order”, Sheffiel Hildesheimer Informatik-Berichte 13/92, Universitat Hildesheim, pp 1–11

  3. Bernando M, Gorrieri R (1998) A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theor Comput Sci 202(1–2):1–54

    Article  Google Scholar 

  4. Best E, Devillers R, Koutny M (1998) Petri nets, process algebras and programming languages. In: Reisig W, Rozenberg G (eds) Lectures on Petri nets II: applications. Advances in Petri nets, vol 1492. Springer, Berlin, pp 1–84

    Google Scholar 

  5. Best E, Devillers R, Koutny M (2001) A consistent model for nets and process algebras. In: Bergstra JA, Ponse A (eds) The handbook on process algebras. North–Holland, Amsterdam, pp 873–944, Chapter 14

    Google Scholar 

  6. Best E, Devillers R, Koutny M (2001) Petri net algebra. EATCS. Springer, Berlin

    Google Scholar 

  7. Best E, Devilllers R, Hall J (1992) The box calculus: a new causal algebra with multi-label communication. In: Rozenberg G (ed) Advances in Petri nets. LNCS, vol 609. Springer, Berlin, pp 21–69

    Google Scholar 

  8. Best E, Koutny M (1995) A refined view of the box algebra. In: De Michelis G, Diaz M (eds) Application and theory of Petri nets 1995, 16th international conference, Turin, Italy. LNCS, vol 935. Springer, Berlin, pp 1–20

    Google Scholar 

  9. Bravetti M, Bernardo M (2000) Compositional asymmetric cooperations for process algebras with probabilities, priorities, and Time. In: Proc of 1st workshop on model for time-critical systems, MTCS 2000. ENTCS, vol 39, issue 3

  10. Hermanns H, Herzog U, Katoen JP (2002) Process algebra for performance evaluation. Theor Comput Sci 274(1–2):43–78

    Article  MATH  MathSciNet  Google Scholar 

  11. Hermanns H, Rettelbach M (1994) Syntax, semantics, equivalences and axioms for MTIPP. In: Herzog U, Rettelbach M (Eds.) Proc of the 2nd workshop on process algebra and performance modelling, Regensberg/Erlangen, pp 71–88

  12. Hillston J (1994) The nature of the synchronization. In: Herzog U, Rettelbach M (eds), Proc of the second international workshop on process algebra and performance modelling, PAPM 1994, Erlagen, pp 51–70

  13. Hillston J (1996) A compositional approach to performance modelling. Cambridge University Press, Cambridge

    Google Scholar 

  14. Kemeny JG, Snell JL (1960) Finite Markov chains. Van Nostrand, Princeton

    MATH  Google Scholar 

  15. Koutny M (2000) A compositional model of time Petri nets. In: Nielsen M, Simpson D (eds) Application and theory of Petri nets 2000, 21st international conference, ICATPN 2000, Aarhus, Denmark, LNCS, vol 1825. Springer, Berlin, pp 303–322

    Chapter  Google Scholar 

  16. Koutny M, Esparza J, Best E (1994) Operational semantics for the Petri box calculus. In: Jonsson B, Parrow (eds) International conference on concurrency theory, CONCUR’94. LNCS, vol 836. Springer, Berlin, pp 210–255

    Chapter  Google Scholar 

  17. Larsen K, Skou A (1991) Bisimulation through probabilistic testing. Inf Comput 94(1):1–28

    Article  MATH  MathSciNet  Google Scholar 

  18. Macià H (2003) sPBC: una extensión Markoviana del Petri box calculus. PhD thesis, Departamento de Informática, Universidad de Castilla-La Mancha (in Spanish)

  19. Macià H, Valero V, Cazorla D, Cuartero F (2004) Introducing the iteration in sPBC. In: de Frutos D, Núñez M (eds) Formal techniques for networked and distributed systems. FORTE 2004, 24th IFIP WG 6.1 international conference, Madrid, Spain. LNCS, vol 3235. Springer, Berlin, pp 292–309

    Google Scholar 

  20. Macià H, Valero V, Cuartero F, Pelayo FL (2003) A new proposal for the synchronization in sPBC. In: Proc of the 3rd international conference on application of concurrent to system design, ACSD 2003, Guimaraes, Portugal. IEEE Computer Society Press, Los Alamitos, pp 216–225

    Chapter  Google Scholar 

  21. Macià H, Valero V, de Frutos D (2001) sPBC: A Markovian extension of finite Petri box calculus. In: Proc of the 9th IEEE int workshop on Petri nets and performance models, PNPM 2001, Aachen, Germany. IEEE Computer Society, Los Alamitos, pp 207–216

    Chapter  Google Scholar 

  22. Marroquín O, de Frutos D (2001) Extending the Petri box calculus with time. In: Colom JM, Koutny M (eds) Application and theory of Petri nets 22nd International Conference, ICATPN 2001, Newcastle upon Tyne, UK. LNCS, vol 2075. Springer, Berlin, pp 195–207

    Google Scholar 

  23. Milner R (1989) Communication and concurrency. Prentice Hall International, Englewood

    MATH  Google Scholar 

  24. Ribaudo M (1995) Stochastic Petri net semantics for stochastic process algebra. In: Proc of the 6th int workshop on Petri nets and performance models (PNPM’95), Durham. IEEE Computer Society, Englewood, pp 148–157

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentín Valero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macià, H., Valero, V., Cuartero, F. et al. A congruence relation for sPBC. Form Methods Syst Des 32, 85–128 (2008). https://doi.org/10.1007/s10703-007-0045-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10703-007-0045-2

Keywords

Navigation