[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Urban environment and sustainable water supply: a comprehensive analysis of Darjeeling city, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This article is an attempt to analyse the link between the condition of city environment and availability of water in Darjeeling city. Darjeeling, located in the Eastern Himalayan Region of India, is such a city which faces acute water scarcity in most part of the year, except during monsoon. The city cannot use ground water directly, and there is no river as source of water as well. It only uses spring water and rain water. The climatic condition and local environmental conditions have higher control over the availability of daily water. This article analyses the city’s 100-year climatic conditions as well as the condition of vegetation cover and built-up areas using NDVI and BUI methods, respectively. The present study explores that the deterioration of natural environmental conditions and increasing demand from both the permanent population and transitory population accelerate the intensity of water scarcity. Measuring the fluctuation of discharge (during pre-monsoon and post-monsoon period), the paper discusses how except in monsoon, most of the spring’s discharge gets reduced and increases the level of water stress in the city. Using quantitative methods, this empirical study explores that the loss of vegetation and haphazard constructions have enormous impact on the fragile hill ecosystem and reduce the rate of infiltration of water in the sub-surface zones, thus reducing the discharge ultimately. Therefore, the study recommends immediate actions to protect the city environment and to revive those springs for the city’s water security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://www.hindustantimes.com/analysis/why-himalayan-towns-are-on-the-brink-of-a-shimla-type-water-crisis/story-4out03d1xblEJJ0BQ1HlfK.html.

  2. https://www.downtoearth.org.in/news/water/fragile-blue-mountains-60555.

References

  • Bakker, K. (2007). The “commons” versus the “commodity”: Alter-globalization, anti-privatization and the human right to water in the global south. Antipode, 39(3), 430–449.

    Article  Google Scholar 

  • Barnes, K. B., Morgan, J. M., III., Roberge, M. C., & Lowe, S. (2001). Sprawl development: Its patterns, consequences, and measurement. (pp. 1–24). Towson University.

    Google Scholar 

  • Bertrand-Krajewski, J. L., Barraud, S., & Chocat, B. (2000). Need for improved methodologies and measurements for sustainable management of urban water systems. Environmental Impact Assessment Review, 20(3), 323–331.

    Article  Google Scholar 

  • Bhandari, A. K., Kumar, A., & Singh, G. K. (2012). Feature extraction using normalized difference vegetation index (NDVI): A case study of Jabalpur city. Procedia Technology, 6, 612–621.

    Article  Google Scholar 

  • Bhatta, B. (2009). Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. International Journal of Remote Sensing, 30(18), 4733–4746.

    Article  Google Scholar 

  • Bhatta, B., Saraswati, S., & Bandyopadhyay, D. (2010). Urban sprawl measurement from remote sensing data. Applied Geography, 30(4), 731–740.

    Article  Google Scholar 

  • Bhatti, S. S., & Tripathi, N. K. (2014). Built-up area extraction using landsat 8 OLI imagery. GIScience & Remote Sensing, 51(4), 445–467.

    Article  Google Scholar 

  • Bugliarello, G. (2003). Large urban concentrations: A new phenomenon. In G. Heiken, R. Fakundiny, & J. Sutter (Eds.), Earth science in the city: A reader. (pp. 7–19). American Geophysical Union.

    Google Scholar 

  • Census of India. (2011). Primary census abstract. Darjeeling district. New Delhi: Government of India.

    Google Scholar 

  • Central Public health and Environmental Engineering Organization (CPHEEO). (2005). Status of water supply, sanitation and solid waste management in urban areas. Ministry of Urban Development. Government of India.

  • Chen, J., Gong, P., He, C., Pu, R., & Shi, P. (2003). Land-use/land-cover change detection using improved change-vector analysis. Photogrammetric Engineering & Remote Sensing, 69(4), 369–379.

    Article  Google Scholar 

  • Chinnasamy, P.; Prathapar, S. A. (2016). Methods to investigate the hydrology of the Himalayan springs: A review. International water management institute (IWMI). IWMI Working Paper (169), pp. 1–15.

  • Choubey, V. M., Bartarya, Sk., & Ramola, R. C. (2000). Radon in Himalayan springs: A geohydrological control. Environmental Geology, 39(6), 523–530.

    Article  CAS  Google Scholar 

  • Dash, A. J. (1947). Bengal district gazetteer: Darjeeling. N.L. Publishers.

    Google Scholar 

  • Drew, G., & Rai, R. P. (2016). Water management in post-colonial Darjeeling: The promise and limits of decentralised resource provision. Asian Studies Review, 40(3), 321–339.

    Article  Google Scholar 

  • Drew, G., & Rai, R. P. (2018). Connection amidst disconnection: Water struggle, social structures, and geographies of exclusion in Darjeeling. In T. Middleton & S. Shneiderman (Eds.), Darjeeling reconsidered. (pp. 219–239). Oxford University Press.

    Chapter  Google Scholar 

  • Gandhi, G. M., Parthiban, S., Thummalu, N., & Christy, A. (2015). NDVI: Vegetation change detection using remote sensing and GIS—a case study of Vellore district. Procedia Computer Science, 57, 1199–1210.

    Article  Google Scholar 

  • Griffiths, P., Hostert, P., Gruebner, O., & van der Linden, S. (2010). Mapping megacity growth with multi-sensor data. Remote Sensing of Environment, 114(2), 426–439.

    Article  Google Scholar 

  • Guindon, B., Zhang, Y., & Dillabaugh, C. (2004). Landsat urban mapping based on a combined spectral–spatial methodology. Remote Sensing of Environment, 92(2), 218–232.

    Article  Google Scholar 

  • He, C., Shi, P., Xie, D., & Zhao, Y. (2010). Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sensing Letters, 1(4), 213–221.

    Article  Google Scholar 

  • Hu, Y., Ban, Y., Zhang, Q., Zhang, X., Liu, J., & Zhuang, D. (2008). Spatial: Temporal pattern of GIMMS NDVI and its dynamics in Mongolian Plateau. In IEEE Proceeding on international workshop on earth observation and remote sensing applications. pp. 1–6.

  • Jensen, J. R. (2006). Remote sensing of the environment: An earth resource perspective. Prentice Hall.

    Google Scholar 

  • Johnston, B. R. (2008). The political ecology of water: An introduction. Capitalism Nature Socialism, 14(3), 73–90.

    Article  Google Scholar 

  • Joshi, P. K., Roy, P. S., Singh, S., Agrawal, S., & Yadav, D. (2006). Vegetation cover mapping in India using multi-temporal IRS wide field sensor (WiFS) data. Remote Sensing of Environment, 103(2), 190–202.

    Article  Google Scholar 

  • Ke, Y., Im, J., Lee, J., Gong, H., & Ryu, Y. (2015). Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sensing of Environment, 164, 298–313.

    Article  Google Scholar 

  • Keil, R. (2005). Progress report: Urban political ecology. Urban Geography, 26(7), 640–651.

    Article  Google Scholar 

  • Lambert, J., Drenou, C., Denux, J. P., Balent, G., & Cheret, V. (2013). Monitoring forest decline through remote sensing time series analysis. GIScience & Remote Sensing, 50(4), 437–457.

    Article  Google Scholar 

  • Lean, J., & Warrilow, D. A. (1989). Simulation of the regional climatic impact of amazon deforestation. Nature, 342, 411–413.

    Article  Google Scholar 

  • Li, H., Xu, C. Y., Beldring, S., Tallaksen, L. M., & Jain, S. K. (2015). Water resources under climate change in Himalayan basins. Springer.

    Google Scholar 

  • Lillesand, M. T., KIefer, W. R., Chipman, N. J. (2008). Remote sensing and image interpretation. (3rd ed.). Wiley.

    Google Scholar 

  • Maktav, D., Erbek, F. S., & Jürgens, C. (2005). Remote sensing of urban areas. International Journal of Remote Sensing, 26(4), 655–659.

    Article  Google Scholar 

  • Darjeeling Municipality. (2012a). Project report of waterworks department.

  • Darjeeling Municipality. (2012b). Project report of conservancy department.

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  CAS  Google Scholar 

  • Navalgund, R. R., Jayaraman, V., & Roy, P. S. (2007). Remote sensing applications: An overview. Current Science, 93(12), 1747–1766.

    Google Scholar 

  • Negi, G. C. S., & Joshi, V. (1996). Geohydrology of springs in a mountain watershed: The need for problem solving research. Current Science, 71(10), 772–776.

    CAS  Google Scholar 

  • Negi, G. C. S., & Joshi, V. (2004). Rainfall and spring discharge patterns in two small drainage catchments in the Western Himalayan mountains, India. The Environmentalist, 24, 19–28.

    Article  Google Scholar 

  • NITI Aayog. (2018). Inventory and revival of springs in the himalayas for water security. Report of Working Group 1.Government of India.

  • Pandey, R., & Jha, S. (2012). Climate vulnerability index-measure of climate change vulnerability to communities: A case of rural lower Himalaya, India. Mitigation and Adaptation Strategies for Global Change, 17(5), 487–506.

    Article  Google Scholar 

  • Planning Commission of India. (2008). Problems of hilly habitations in areas covered by Hill Areas Development Program (HADP)/Western Ghats Development Program (WGDP). Retrieved from http://planningcommission.nic.in/aboutus/committee/wrkgrp11/tg11_hillarea.pdf.

  • Research and Information System (RIS) for Developing Countries. (2016). India and sustainable development goals: The way forward. United Nations.

  • Richards, J. A. (2013). Remote sensing digital image analysis: An introduction. Springer.

    Book  Google Scholar 

  • Rouse Jr, J., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the 3rd ERTS Symposium, NASA SP-351, pp. 309–317.

  • Roy, P. S., Behera, M. D., Murthy, M. S. R., Roy, A., Singh, S., Kushwaha, S. P. S., & Gupta, S. (2015). New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation, 39, 142–159.

    Article  Google Scholar 

  • Roy, P. S., Murthy, M. S. R., Roy, A., Kushwaha, S. P. S., Singh, S., Jha, C. S., & Saran, S. (2013). Forest fragmentation in India. Current Science, 105(6), 774–780.

    Google Scholar 

  • Samanta, G., & Koner, K. (2016). Urban political ecology of water in Darjeeling. India South Asian Water Studies, 5(3), 42–57.

    Google Scholar 

  • Scott, J. C. (1998). Seeing like a state: How certain schemes to improve the human condition have failed. Yale University Press.

    Google Scholar 

  • Shah, M., & Kulkarni, H. (2015). Urban water systems in India: Typologies and hypothesis. Economic and Political Weekly, 30, 57–69.

    Google Scholar 

  • Sharma, B; Nepal, S; Gyawali, D; Pokharel, GS; Wahid, SM; Mukherji, A; Acharya, S; Shrestha, AB. (2016). Springs, storage towers, and water conservation in the midhills of Nepal. Nepal Water Conservation Foundation and International Center for Mountain Development (ICIMOD), Working Paper 2016/3, pp. 1–45.

  • Shneiderman, S., & Middleton, T. (2018). Introduction: Darjeeling reconsidered. In T. Middleton & S. Shneiderman (Eds.), Darjeeling reconsidered: Histories, politics, environments. Oxford University Press.

    Google Scholar 

  • Shrestha, R. B., Desai, J., Mukherji, A., Dhakal, M., Kulkarni, H., Mahamuni, K., Bhuchar, S., & Bajracharya, S. (2018). Protocol for reviving springs in the Hindu Kush Himalayas: A practitioner’s manual. (pp. 1–73). International Centre for Integrated Mountain Development (ICIMOD).

    Book  Google Scholar 

  • Tambe, S., Kharel, G., Arrawatia, M. L., Kulkarni, H., Mahamuni, K., & Ganeriwala, A. K. (2012). Reviving dying springs: Climate change adaptation experiments from the Sikkim Himalaya. Mountain Research and Development. International Mountain Society, 32(1), 62–72.

    Article  Google Scholar 

  • Townshend, J. R., Goff, T. E., & Tucker, C. J. (1985). Multitemporal dimensionality of images of normalized difference vegetation index at continental scales. IEEE Transactions on Geoscience and Remote Sensing, 23(6), 888–895.

    Article  Google Scholar 

  • Townshend, J. R., & Justice, C. O. (1986). Analysis of the dynamics of African vegetation using the normalized difference vegetation index. International Journal of Remote Sensing, 7(11), 1435–1445.

    Article  Google Scholar 

  • Townshend, J., Justice, C., Li, W., Gurney, C., & McManus, J. (1991). Global land cover classification by remote sensing: Present capabilities and future possibilities. Remote Sensing of Environment, 35(2–3), 243–255.

    Article  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127–150.

    Article  Google Scholar 

  • Van de Voorde, T., Vlaeminck, J., & Canters, F. (2008). Comparing different approaches for mapping urban vegetation cover from Landsat ETM+ data: A case study on Brussels. Sensors, 8(6), 3880–3902.

    Article  Google Scholar 

  • Vashisht, A. K., & Sharma, H. C. (2007). Study on hydrological behaviour of a natural spring. Current Science, 93(6), 837–840.

    Google Scholar 

  • Wang, Q., & Tenhunen, J. D. (2004). Vegetation mapping with multitemporal NDVI in North Eastern China transect (NECT). International Journal of Applied Earth Observation and Geoinformation, 6(1), 17–31.

    Article  Google Scholar 

  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89, 467–483.

    Article  Google Scholar 

  • Whyte, A. V. (1986). Guidelines for planning community participation activities in water supply and sanitation projects. WHO.

    Google Scholar 

  • Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: A review. Journal of Plant Ecology, 1(1), 9–23.

    Article  Google Scholar 

  • Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaberi Koner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koner, K., Samanta, G. Urban environment and sustainable water supply: a comprehensive analysis of Darjeeling city, India. Environ Dev Sustain 23, 17459–17482 (2021). https://doi.org/10.1007/s10668-021-01396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01396-y

Keywords

Navigation