[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Change in forest and vegetation cover influencing distribution and uses of plants in the Kailash Sacred Landscape, Nepal

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The study of vegetation and land-use change has been frequently used to assess the anthropogenic impacts on the distribution and uses of medicinal plant species. Using data from ecological investigations, remote sensing and participant observations, the nexus of socioeconomy, forest management and conservation of medicinal plants can be analyzed. In the current study, we employed a similar approach to study the impact of forest and vegetation cover, socioeconomic changes on plant distribution and use in remote and rural districts of Nepal. We have used remote-sensing data to analyze the Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) as proxies to analyze the changes in forest cover and vegetation. Informant interviews and group discussions were held with local participants to assess their opinion about the uses and distribution of plants, forests and vegetation. While the overall vegetation cover was decreasing, a fluctuated pattern was recorded with a reduction in NDVI from 2000 to 2008, and subsequent increase after that. A positive correlation between LAI and NDVI was found, but the index varied spatially and temporally and sometimes was negatively correlated as NDVI saturated and became insensitive. Due to decreasing old-growth primary forests, land-use changes, and increasing sociocultural transformations, we found that the tradition of transhumance and collection of indigenous medicinal plants were rapidly being changed and the non-indigenous plants were increasingly being collected from the accessible forest areas and human-derived landscapes. These changes help us conclude that the salient sites and species are being assimilated in the local traditions; making traditional systems more versatile, diverse and adaptive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acharya, K. P. (2004). Does community forests management supports biodiversity conservation? Evidences from two community forests from the mid hills of Nepal. Journal of Forest and Livelihood,4(1), 44–53.

    Google Scholar 

  • Adnan, M., & Holscher, D. (2011). Diversity and abundance of medicinal plants among different forest-use types of the Pakistani Himalaya. Economic Botany,66, 344–356.

    Google Scholar 

  • Alves, R. R. N., & Rosa, I. M. L. (2007). Biodiversity, traditional medicine and public health: Where do they meet? Journal of Ethnobiology and Ethnomedicine,3, 14. https://doi.org/10.1186/1746-4269-3-14.

    Article  Google Scholar 

  • Anyinam, C. (1995). Ecology and ethnomedicine: Exploring links between current environmental crisis and indigenous medical practices. Social Science and Medicine,40(3), 321–329.

    CAS  Google Scholar 

  • Arnold, J. E. M., & Pérez, M. R. (2001). Can non-timber forest products match tropical forest conservation and development objectives? Ecological Economics,39, 437–447. https://doi.org/10.1016/S0921-8009(01)00236-1.

    Article  Google Scholar 

  • Asner, G. P., Scurlok, J. M. O., & Hicke, J. A. (2003). Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Global Ecology and Biogeography,12, 191–205.

    Google Scholar 

  • Baral, S., Adhikari, A., Khanal, R., Malla, Y., Kunwar, R., Basnyat, B., et al. (2017). Invasion of alien plant species and their impact on different ecosystems of Panchase Area, Nepal. Banko Janakari, 27(1). http://bankojanakari.gov.np/view?id=10.

    Google Scholar 

  • Bhandari, G. (2013). Effect of rainfall on the yield of major cereals in Darchula district of Nepal. International Journal of Environment,3(1), 205–213.

    Google Scholar 

  • Bhatta, D. B. (2003). Community approaches to natural resources management: Sacred and non-sacred landscapes in Nepal. Master thesis, Miami University, Oxford, Ohio.

  • Bhattarai, K., & Conway, D. (2008). Evaluating land-use dynamics and forest cover change in Nepal’s Bara district (1973–2003). Human Ecology,36, 81–95.

    Google Scholar 

  • Bradley, B. A., Blumenthal, D. M., Wilcove, D. S., & Ziska, L. H. (2010). Predicting plant invasions in an era of global change. Trends in Ecology & Evolution,25, 310–318.

    Google Scholar 

  • Brotons, L., Herrando, S., & Pla, M. (2007). Updating bird species distribution at large spatial scales: Applications of habitat modelling to data from long-term monitoring programs. Diversity and Distributions,13, 276–288.

    Google Scholar 

  • Burlakoti, C., & Kunwar, R. M. (2008). Folk herbal medicines of Mahakali watershed, Nepal. In P. K. Jha, S. B. Karmacharya, M. K. Chettri, C. B. Thapa, & B. B. Shrestha (Eds.), Medicinal plants in Nepal: An anthology of contemporary research (pp. 187–193). Nepal: Ecological Society.

    Google Scholar 

  • Chand, P. B., & Wilson, A. (1987). A case study of the development of local forest management in Darchula. Banko Janakari,1(4), 20–23.

    Google Scholar 

  • Chaudhary, R. P., Shrestha, K. K., Jha, P. K., & Bhatta, L. (2010) Kailash Sacred Landscape conservation initiative feasibility assessment report. ICIMOD and Central Department of Botany, Tribhuvan University, Kathmandu, Nepal.

  • Chettri, N., Sharma, E., & Thapa, R. (2009). Long term monitoring using transect and landscape approaches within Hindu Kush Himalayas. In E. Sharma (Ed.), Proceedings of the International Mountain Biodiversity Conference International Mountain Biodiversity Conference (pp. 201–208). Kathmandu: ICIMOD.

  • Chhetri, R., & Pandey, T. R. (1992). Use group forestry in Far Western Region of Nepal: Case studies from Baitadi and Accham. Kathmandu: International Center for Integrated Mountain Development (ICIMOD).

    Google Scholar 

  • Collins, R., & Jenkins, A. (1996). The impact of agricultural land-use on stream chemistry in the Middle Hills of the Himalayas, Nepal. Journal of Hydrology,185(1), 71–86. https://doi.org/10.1016/0022-1694(95)03008-5.

    Article  CAS  Google Scholar 

  • Deb, P., Debnath, P., Denis, A. F., & Lepcha, O. T. (2018). Variability of soil physicochemical properties at different agroecological zones of Himalayan region: Sikkim, India. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0137-8.

    Article  Google Scholar 

  • Deb, P., Kiem, A. S., Babel, M. S., Chu, S. T., & Chakma, B. (2015). Evaluation of climate change impacts and adaptation strategies for maize cultivation in the Himalayan foothills of India. Journal of Water and Climate Change,6(3), 596–614. https://doi.org/10.2166/wcc.2015.070.

    Article  Google Scholar 

  • Deb, J. C., Phinn, S., Butt, N., & McAlpine, C. A. (2017). The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecology and Evolution. https://doi.org/10.1002/ece3.2846.

    Article  Google Scholar 

  • DFRS. (2014). Churia Forests of Nepal. Forest Resource Assessment Nepal project. Department of Forest Research and Survey, Babarmahal, Kathmandu, Nepal, 236 p.

  • Ekholm, E. (1975). The deterioration of mountain environments. Science,189, 764–770.

    Google Scholar 

  • Elliott, A. (2012). Botanical exploration of Darchula district, Farwestern Nepal. Scottish Rock Garden Club, Royal Botanic Garden Edinburgh, The University of Edinburgh, UK.

  • Eriksson, M., Xu, J., Shrestha, A. B., Vaidya, R. A., Nepal, S., & Sandström, K. (2009). The changing Himalayas: Impact of climate change on water resources and livelihoods in the Greater Himalayas. Kathmandu: ICIMOD.

    Google Scholar 

  • Gaire, N. P., Koiral, M., Bhuju, D., & Borgaonkar, H. P. (2013). Treeline dynamics with climate change at Central Nepal Himalaya. Climate of the Past Discussions,9, 5941–5976. https://doi.org/10.5194/cpd-9-5941-2013.

    Article  Google Scholar 

  • Gunderson, L. H., & Holling, C. S. (2002). Panarchy: Understanding transformations in human and natural systems. Washington, DC: Island Press.

    Google Scholar 

  • Humagain, K. (2012). Examining land-use/land cover change and potential causal factors in the context of climate change in Sagarmatha National Park, Nepal. Masters Thesis and Specialist Projects. Paper 1218. http://digitalcommons.wku.edu/theses/1218.

  • Humphreys, G. (2014). Reframing climate change as a health issue. Bulletin of World Health Organization,92, 551–552. https://doi.org/10.2471/BLT.14.020814.

    Article  Google Scholar 

  • IPCC. (2007). Climate change 2007: An assessment of the Intergovernmental Panel on Climate Change. Change, 446(November): 12–17. Available from: http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf.

  • Kala, C. P. (2006). Medicinal plants: Potential for economic development in the state of Uttaranchal, India. International Journal of Sustainable Development and World Ecology,13, 492–498.

    Google Scholar 

  • Kale, M., Singh, S., & Roy, P. S. (2005). Estimation of Leaf Area Index in dry deciduous forests from IRS-WiFS in central India. International Journal of Remote Sensing,26, 4855–4867. https://doi.org/10.1080/01431160500181309.

    Article  Google Scholar 

  • Kaphle, K. P. (1992). Geology, petrology and geochemistry of Dadeldhura Granite Massif, Farwestern Nepal. Kashmir Journal of Geology,10, 75–91.

    Google Scholar 

  • Khanal, N. (2002). Land-use and land cover dynamics in the Himalaya: A case study of the Madi Watershed, Western Development Region, Nepal. Tribhuvan University, Kirtipur, Nepal, 297 p.

  • Kindscher, K., Corbett, S., & McClure, K. (2013). A statistical analysis of medicinal plants: A case study of plant families in Kansas and the Great Plains. Transactions of the Kansas Academy of science,116(3–4), 149–155.

    Google Scholar 

  • Knyazikhin, J., Glassy, J. L., Privette, Y., Tian, A., Lotsch, Y., Zhang, Y., et al. (1999) Running, MODIS Leaf Area Index and fraction of photosynthetically active radiation absorbed by vegetation product. MOD15 algorithm theoretical basis document. http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf.

  • Koch, M., Kehop, D. A., Kinminja, B., Sabak, M., Wavimbukie, G., Barrows, K. M., et al. (2015). An ethnobotanical survey of medicinal plants used in the East Sepik province of Papua New Guinea. Journal of Ethnobiology and Ethnomedicine,11, 79. https://doi.org/10.1186/s13002-015-0065-8.

    Article  Google Scholar 

  • Kunwar, R. M., Baral, K., Paudel, P., Acharya, R. P., Thapa-Magar, K. B., Cameron, M., et al. (2016). Land-use and socio-economic change, medicinal plant selection and biodiversity resilience in far Western Nepal. PLoS ONE,11(12), e0167812. https://doi.org/10.1371/journal.pone.0167812.

    Article  CAS  Google Scholar 

  • Kunwar, R. M., Hindle, T., & Rimal, B. (2018). Forest cover and land-use change in rural mountain district Darchula of Far Western Nepal. The Florida Geographer,47, 1–14.

    Google Scholar 

  • Kunwar, R. M., Mahat, L., Sharma, L. N., Shrestha, K. P., Kominee, H., & Bussmann, R. W. (2012). Underutilized plant species in Farwest Nepal. Journal of Mountain Science,9, 589–600.

    Google Scholar 

  • Kunwar, R. M., Pandey, M. L., Mahat Kunwar, L., & Bhandari, A. (2014). Medicinal plants and ethnomedicine in peril: A case study from Nepal Himalaya. eCAM,792789, 7. https://doi.org/10.1155/2014/792789.

    Article  Google Scholar 

  • Lilleso, J. B., Shrestha, T. B., Dhakal, L. P. Nayaju, R. P., & Shrestha, R. (2005). The map of potential vegetation of Nepal: A forestry/agroecological/biodiversity classification system. Forest and Landscape Development and Environment Series 2, CFC-TIS Document, 110.

  • Lundholm, J. T., & Marlin, A. (2006). Habitat origins and microhabitat preferences of urban plant species. Urban Ecosystem,9, 139–159.

    Google Scholar 

  • Luoto, M., & Heikkinen, R. K. (2008). Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Global Change Biology,14, 483–494.

    Google Scholar 

  • Mainali, J., All, J., Jha, P. K., & Bhuju, D. R. (2015). Responses of montane forest to climate variability in the Central Himalayas of Nepal. Mountain Research and Development,35(1), 66–77.

    Google Scholar 

  • Mainali, J., & Pricope, N. (2017). High-resolution spatial assessment of population vulnerability to climate change in Nepal. Applied Geography,82, 66–82.

    Google Scholar 

  • Maitima, J. M., Mugatha, S. M., Reid, R. S., Gachimbi, L. N., Majule, A., Lyaruu, H. L., et al. (2009). The linkages between land-use change, land degradation and biodiversity across East Africa. African Journal of Environmental Science and Technology,3(10), 310–325.

    Google Scholar 

  • Manzardo, A. E., Dahal, D. R., & Rai, N. K. (1976). The Byanshi: An ethnographic note on a trading group in Farwestern Nepal. Contributions to Nepalese Studies,3(2), 83–118.

    CAS  Google Scholar 

  • Maren, I., Bhattarai, K. R., & Chaudhary, R. P. (2013). Forest ecosystem services and biodiversity: The resource flux from forests to farms in the Himalayas. Kathmandu, Nepal: Technical Report.

    Google Scholar 

  • Maroyi, A. (2013). Traditional use of medicinal plants in south-central Zimbabwe: Review and perspectives. Journal of Ethnobiology and Ethnomedicine,9, 31. https://doi.org/10.1186/1746-4269-9-31.

    Article  Google Scholar 

  • Moerman, D. E. (1979). Symbols and selectivity: A statistical analysis of native American medical ethnobotany. Journal of Ethnopharmacology,1, 111–119.

    CAS  Google Scholar 

  • MPFS. (1988). Master Plan for Forestry Sector, Nepal. Kathmandu: Ministry of Forests and Soil Conservation.

    Google Scholar 

  • Nautiyal, S., Rajan, K. S., & Shibasiki, R. (2005). Interaction of biodiversity and economic welfare—A case study from the Himalayas of India. Journal of Environmental Informatics,6, 111–119.

    Google Scholar 

  • Nield, R. (1985). Fuelwood and fodder-problems and policy. Kathmandu: Water and Energy Commission Secretariat.

    Google Scholar 

  • Olsen, C. S. (2005). Valuation of commercial central Himalayan medicinal plants. Ambio,34, 607–610.

    Google Scholar 

  • Panta, M., Kim, K., & Joshi, C. (2008). Temporal mapping of deforestation and forest degradation in Nepal: Applications to forest conservation. Forest Ecology and Management,256, 1587–1595.

    Google Scholar 

  • Paudel, K. P., & Anderson, P. (2010). Assessing rangeland degradation using multi temporal satellite images and grazing pressure surface model in upper Mustang, Trans-Himalaya, Nepal. Remote Sensing of Environment,114, 1845–1855.

    Google Scholar 

  • Phillips, O., & Gentry, A. H. (1993). The useful plants of Tambopata, Peru I: Statistical hypothesis tests with a new quantitative technique. Economic Botany,47, 15–32.

    Google Scholar 

  • Pirker, H., Haselmair, R., Kuhn, E., Schunko, C., & Vogl, C. R. (2012). Transformation of traditional knowledge of medicinal plants: The case of Tyroleans (Austria) who migrated to Australia, Brazil and Peru. Journal of Ethnobiology and Ethnomedicine,8, 44.

    Google Scholar 

  • Poertner, E., Junginger, M., & Muller-Boker, U. (2011). Migration in Farwest Nepal. Critical Asian Studies,43, 23–47.

    Google Scholar 

  • Quave, C. L., & Pieroni, A. A. (2015). Reservoir of ethnobotanical knowledge informs resilient food security and health strategies in the Balkans. Nature Plants, 1. www.nature.com/natureplants.

  • Reddy, C. S., Pasha, S. V., Satish, K. V., Saranya, K. R. L., Jha, C. S., & Murthy, Y. V. N. K. (2018). Quantifying nationwide land cover and historical changes in forests of Nepal (1930–2014): Implications on forest fragmentation. Biodiversity and Conservation,27, 91–107.

    Google Scholar 

  • Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., & Toomey, M. (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology,169, 156–173.

    Google Scholar 

  • Rimal, B., Zhang, L., Fu, D., Kunwar, R., & Zhai, Y. (2017). Monitoring urban growth and the Nepal Earthquake 2015 for sustainability of Kathmandu Valley, Nepal. Land,6(2), 42. https://doi.org/10.3390/land6020042.

    Article  Google Scholar 

  • Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., et al. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS,108(24), 9899–9904. https://doi.org/10.1073/pnas.1019576108.

    Article  Google Scholar 

  • Sala, O. E., et al. (2000). Global biodiversity scenarios for the year 2100. Science,287, 1770–1774. https://doi.org/10.1126/science.287.5459.1770.

    Article  CAS  Google Scholar 

  • Salick, J., Ghimire, S. K., Zhendong, F., Dema, S., & Konchar, K. K. (2014). Himalayan alpine vegetation, climate change and mitigation. Journal of Ethnobiology,34(3), 276–293.

    Google Scholar 

  • Seoane, J., Bustamante, J., & Diaz-Delgado, R. (2004). Competing roles for landscape, vegetation, topography and climate in predictive models of bird distribution. Ecological Modelling,171, 209–222.

    Google Scholar 

  • Shrestha, U. B., & Bawa, K. (2014). Trade, harvest, and conservation of caterpillar fungus (Ophiocordyceps sinensis) in the Himalayas. Biological Conservation,159, 514–520.

    Google Scholar 

  • Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE,7(5), e36741. https://doi.org/10.1371/journal.pone.0036741.

    Article  CAS  Google Scholar 

  • Stepp, J. R., & Moerman, D. E. (2001). The importance of weeds in ethnopharmacology. Journal of Ethnopharmacology,75, 19–23.

    CAS  Google Scholar 

  • Suwal, M., Shrestha, K. B., Guragain, L., Shakya, R., Shrestha, K., Bhuju, D. R., et al. (2016). Land-use change under a warming climate facilitated upslope expansion of Himalayan silver fir (Abies spectabilis (D. Don) Spach). Plant Ecology,217(8), 993–1002.

    Google Scholar 

  • Telwala, Y., Brook, B. W., Kumar, M., & Pandit, M. L. (2013). Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicenter. PLoS ONE,8(2), e57103. https://doi.org/10.1371/journal.pone.0057103.

    Article  CAS  Google Scholar 

  • Thein, T. R., Watson, F. G. R., Cornish, S. S., Anderson, T. N., Newman, W. B., & Lockwood, R. E. (2009). Vegetation dynamics of Yellowstone’s grazing system. In R. A. Garrot, P. J. White, & F. G. R. Watson (Eds.), The ecology of large mammals in central Yellowstone (pp. 113–134). Amsterdam: Elsevier.

    Google Scholar 

  • Thuiller, W., Araújo, M. B., & Lavorel, S. (2004). Do we need land-cover data to model species distributions in Europe? Journal of Biogeography,31, 353–361.

    Google Scholar 

  • Toledo, V. M., Batis, A. I., Bacerra, R., Martinez, E., & Ramos, C. H. (1995). La silva util: ethnobotanica cuantitativa de los grupos indigenas del tropico humido de Mexico. Interciencia,20, 177–187.

    Google Scholar 

  • Tse-ring, K., Sharma, E., Chettri, N., & Shrestha, A. (2010). Climate change vulnerability of mountain ecosystems in the Eastern Himalayas. Kathmandu: ICIMOD.

    Google Scholar 

  • Uddin, K., Chaudhary, S., Chettri, N., Kotru, R., Murthy, M., Chaudhary, R. P., et al. (2015a). The changing land cover and fragmenting forest on the Roof of the World: A case study in Nepal’s Kailash Sacred Landscape. Landscape and Urban Planning,141, 1–10.

    Google Scholar 

  • Uddin, K., Shrestha, H. L., Murthy, M. S. R., Bajracharya, B., Shrestha, B., Gilani, H., et al. (2015b). Development of 2010 national land cover database for Nepal. Journal of Environment Management,148, 82–90.

    Google Scholar 

  • UNWFP. (2006). Food security bulletin, 15th October 2006. Lalitpur: UNWFP.

    Google Scholar 

  • Voeks, R. A., & Leony, A. (2004). Forgetting the forest: Assessing medicinal plant erosion in eastern Brazil. Economic Botany,58, 94–106.

    Google Scholar 

  • Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., et al. (2002). Ecological responses to recent climate change. Nature,416, 389–395.

    CAS  Google Scholar 

  • Walther, G. R., Roques, A., et al. (2009). Alien species in a warmer world: Risks and opportunities. Trends in Ecology & Evolution,24(12), 686–693. https://doi.org/10.1016/j.tree.2009.06.008.

    Article  Google Scholar 

  • Wang, Y., Woodcock, C. E., Buermann, W., Stenberg, P., Voipio, P., Smolander, H., et al. (2004). Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sensing of Environment,91(1), 114–127.

    Google Scholar 

  • Wright, S. J., & Muller-Landau, H. C. (2006). The future of tropical forest species. Biotropica,38, 287–301.

    Google Scholar 

  • Xin, L., Cheng, G. D., Jin, H. J., Kang, E. S., Che, T., Jin, R., et al. (2008). Cryospheric change in China. Global and Planetary Change,62, 210–218.

    Google Scholar 

  • Zomer, R., & Oli, K. P. (2011). Kailash sacred landscape conservation initiative—Feasibility assessment report. Kathmandu: ICIMOD.

    Google Scholar 

  • Zomer, R., Trabucco, A., Metzger, M., & Oli, K. P. (2013). Environmental stratification of Kailash Sacred Landscape and projected climate change impacts on ecosystems and productivity. Working Paper 2013/1, ICIMOD, Kathmandu, Nepal.

Download references

Acknowledgements

This study was partially funded by endowment fund of WLBC, Missouri Botanical Garden, Garden Club of America, Anne S. Chatham Fellowship (2012-3), USA, and Rufford Small Grant Foundation (21198-2), UK. We are thankful to Sanjay Tiwari for his field supports. Faisal Mueen Qamer, Gokarna Thapa, Kamal Humagain, Yogendra Karna are acknowledged for their supports in analyses of data. The authors are grateful to local communities for their supports for data collection, and John Metz, Keshab Bhattarai and Maria Fadiman for critical feedback on earlier manuscripts. The thorough reviews by the anonymous reviewers were useful for improving the paper.

Author information

Authors and Affiliations

Authors

Contributions

RMK designed study, carried out field work and prepared draft. RMK and ASA carried out field work. AE, BR and JM analyzed geospatial data. AE and RWB edited drafts and contributed statistical analyses.

Corresponding author

Correspondence to Ripu M. Kunwar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunwar, R.M., Evans, A., Mainali, J. et al. Change in forest and vegetation cover influencing distribution and uses of plants in the Kailash Sacred Landscape, Nepal. Environ Dev Sustain 22, 1397–1412 (2020). https://doi.org/10.1007/s10668-018-0254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0254-4

Keywords

Navigation