[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Scenario modeling for spatial-temporal change detection of carbon storage and sequestration in a forested landscape in Northern Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study was conducted, based on scenario modeling approach, in the Do-hezar and Se-hezar forested landscape in the Mazandaran Province in Northern Iran in order to detect spatial-temporal changes of carbon storage and sequestration in four different carbon pools, i.e., aboveground and belowground biomasses, dead organic matter, and organic soils. For this purpose, firstly, the changing trend of land use/land cover (LULC) was detected by analyzing and comparing remotely sensed data of the landscape during the period of 1984–2016. Then, the impacts of future LULC changes on carbon storage and sequestration were predicted and valued using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model under two future plausible scenarios of business as usual (BAU) and balanced development (BD). According to the results of BAU scenario, continuation of the current trend will lead to a significant reduction in the carbon sequestration and a huge amount of social cost due to the loss of carbon stored in the landscape and its release to the atmosphere. The BD scenario which refers to the principled and under control development of human settlements simultaneously with forest conservational and restoration activities, could potentially reverse the downtrend of carbon sequestration service and avoid future socioeconomic costs, hence add to the economic value of the forest landscape in terms of providing a better sink for carbon storage. The results of this research can facilitate the quantitative and accurate assessment of carbon storage and sequestration relying on more precise biophysical and economic data as well as provide insight for effective land-use planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aalde, H., Gonzalez, P., Gytarsky, M., Krug, T., Kurz, W. A., Lasco, R. D., Martino, D. L., McConkey, B. G., Ogle, S., & Paustian, K. (2006). Generic methodologies applicable to multiple land-use categories. IPCC guidelines for national greenhouse gas inventories, 4, 1–59.

    Google Scholar 

  • Amirnejad, H., Khalilian, S., Assareh, M. H., & Ahmadian, M. (2006). Estimating the existence value of north forests of Iran by using a contingent valuation method. Ecological Economics, 58, 665–675.

    Article  Google Scholar 

  • Amiro, B., Barr, A., Barr, J., Black, T.A., Bracho, R., Brown, M., Chen, J., Clark, K., Davis, K. & Desai, A. (2010). Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research: Biogeosciences 115.

  • Arneth, A., Sitch, S., Pongratz, J., Stocker, B., Ciais, P., Poulter, B., Bayer, A., Bondeau, A., Calle, L., & Chini, L. (2017). Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience, 10, 79–84.

    Article  CAS  Google Scholar 

  • Ashraf Vaghefi, S., Mousavi, S., Abbaspour, K., Srinivasan, R., & Yang, H. (2014). Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River basin in Iran. Hydrological Processes, 28, 2018–2032.

    Article  Google Scholar 

  • Azari, M., Moradi, H. R., Saghafian, B., & Faramarzi, M. (2016). Climate change impacts on streamflow and sediment yield in the North of Iran. Hydrological Sciences Journal, 61, 123–133.

    Article  Google Scholar 

  • Bagstad, K. J., Semmens, D. J., Waage, S., & Winthrop, R. (2013). A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosystem Services, 5, 27–39.

    Article  Google Scholar 

  • Baral, H., Keenan, R. J., Fox, J. C., Stork, N. E., & Kasel, S. (2013). Spatial assessment of ecosystem goods and services in complex production landscapes: a case study from south-eastern Australia. Ecological Complexity, 13, 35–45.

    Article  Google Scholar 

  • Baral, H., Keenan, R. J., Sharma, S. K., Stork, N. E., & Kasel, S. (2014a). Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecological Indicators, 36, 552–562.

    Article  Google Scholar 

  • Baral, H., Keenan, R. J., Stork, N. E., & Kasel, S. (2014b). Measuring and managing ecosystem goods and services in changing landscapes: a south-east Australian perspective. Journal of Environmental Planning and Management, 57, 961–983.

    Article  Google Scholar 

  • Brovkin, V., Boysen, L., Arora, V., Boisier, J., Cadule, P., Chini, L., Claussen, M., Friedlingstein, P., Gayler, V., & Van Den Hurk, B. (2013). Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. Journal of Climate, 26, 6859–6881.

    Article  Google Scholar 

  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper, 134, Food and Agriculture Organization of the United Nations, Rome, 1997.

  • Burkhard, B., Kroll, F., Müller, F. & Windhorst, W. (2009). Landscapes’ capacities to provide ecosystem services–a concept for land-cover based assessments. Landscape online, 15, 22.

  • Canadell, J. G., & Raupach, M. R. (2008). Managing forests for climate change mitigation. Science, 320, 1456–1457.

    Article  CAS  Google Scholar 

  • Capoor, K. & Ambrosi, P. (2007). State and trends of carbon pricing. World Bank, Washington, D.C.: World Bank Group.

  • Caspersen, J. P., Pacala, S. W., Jenkins, J. C., Hurtt, G. C., Moorcroft, P. R., & Birdsey, R. A. (2000). Contributions of land-use history to carbon accumulation in US forests. Science, 290, 1148–1151.

    Article  CAS  Google Scholar 

  • Chen, J., John, R., Sun, G., McNulty, S., Noormets, A., Xiao, J., Turner, M.G. & Franklin, J.F. (2014). Carbon fluxes and storage in forests and landscapes. In, Forest landscapes and global change. Springer, pp. 139–166.

  • Cordingley, J. E., Newton, A. C., Rose, R. J., Clarke, R. T., & Bullock, J. M. (2016). Can landscape-scale approaches to conservation management resolve biodiversity–ecosystem service trade-offs? Journal of Applied Ecology, 53, 96–105.

    Article  CAS  Google Scholar 

  • Curtis, P., Vogel, C., Gough, C., Schmid, H., Su, H. B., & Bovard, B. (2005). Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999–2003. New Phytologist, 167, 437–456.

    Article  CAS  Google Scholar 

  • Delaney, M., Brown, S., Lugo, A. E., Torres-Lezama, A., & Quintero, N. B. (1998). The quantity and turnover of dead wood in permanent forest plots in six life zones of Venezuela1. Biotropica, 30, 2–11.

    Article  Google Scholar 

  • Eggleston, H., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. (2006). IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies, Hayama, Japan.

  • Egoh, B., Reyers, B., Rouget, M., O'Farrel, P., Maitre, D.l. & Cowling, R. (2013). Identifying priority areas for ecosystem services management in South Africa. In, Revitalising grasslands to sustain our communities: Proceedings, 22nd International Grassland Congress, 15–19 September, 2013, Sydney, Australia. New South Wales Department of Primary Industry, pp. 1770–1774.

  • Eskandari, H., Borji, M., Khosravi, H., & Mesbahzadeh, T. (2016). Desertification of forest, range and desert in Tehran province, affected by climate change. Solid Earth, 7, 905–915.

    Article  Google Scholar 

  • Falahatkar, S., Hosseini, S. M., Mahiny, A. S., Ayoubi, S., & Wang, S.-Q. (2014). Soil organic carbon stock as affected by land use/cover changes in the humid region of northern Iran. Journal of Mountain Science, 11, 507–518.

    Article  Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2, 045023.

    Article  CAS  Google Scholar 

  • Grinand, C., Le Maire, G., Vieilledent, G., Razakamanarivo, H., Razafimbelo, T., & Bernoux, M. (2017). Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing. International Journal of Applied Earth Observation and Geoinformation, 54, 1–14.

    Article  Google Scholar 

  • Haghdoost, N., Akbarinia, M., Hosseini, S. M., & Kooch, Y. (2011). Conversion of Hyrcanian degraded forests to plantations: effects on soil C and N stocks. Annals of Biological Research, 50, 385–399.

    Google Scholar 

  • Hamilton, K., Bayon, R., Turner, G. & Higgins, D. (2007). State of the voluntary carbon markets 2007. Picking up steam. Washington, DC.

  • Hanson, P., Edwards, N., Garten, C., & Andrews, J. (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115–146.

    Article  CAS  Google Scholar 

  • Hauck, J., Görg, C., Varjopuro, R., Ratamäki, O., Maes, J., Wittmer, H., & Jax, K. (2013). “Maps have an air of authority”: potential benefits and challenges of ecosystem service maps at different levels of decision making. Ecosystem Services, 4, 25–32.

    Article  Google Scholar 

  • Iverson, L., Echeverria, C., Nahuelhual, L., & Luque, S. (2014). Ecosystem services in changing landscapes: an introduction. Landscape Ecology, 29, 181–186.

    Article  Google Scholar 

  • Jackson, B., Pagella, T., Sinclair, F., Orellana, B., Henshaw, A., Reynolds, B., Mcintyre, N., Wheater, H., & Eycott, A. (2013). Polyscape: a GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services. Landscape and Urban Planning, 112, 74–88.

    Article  Google Scholar 

  • Jafari, Z. S., & Mesri, S. (2015). Soil carbon sequestration capacity in different land uses (case study: award watershed in Mazandaran Province). Environmental Resources Research, 3, 139–150.

    Google Scholar 

  • Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423–436.

    Article  Google Scholar 

  • Juwarkar, A., Varghese, A., Singh, S., Aher, V., & Thawale, P. (2011). Carbon sequestration potential in aboveground biomass of natural reserve forest of Central India. International journal of Agriculture: Research and Review, 1, 80–86.

    Google Scholar 

  • Kelly, R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., ElSawah, S., Hamilton, S. H., Henriksen, H. J., Kuikka, S., Maier, H. R., & Rizzoli, A. E. (2013). Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling & Software, 47, 159–181.

    Article  Google Scholar 

  • Kooch, Y., Theodose, T., & Samonil, P. (2014). Role of deforestation on spatial variability of soil nutrients in a Hyrcanian forest. Ecopersia, 2, 779–803.

    Google Scholar 

  • Losi, C. J., Siccama, T. G., Condit, R., & Morales, J. E. (2003). Analysis of alternative methods for estimating carbon stock in young tropical plantations. Forest Ecology and Management, 184, 355–368.

    Article  Google Scholar 

  • Mackey, B.G. (2008). Green carbon: the role of natural forests in carbon storage. ANU E Press.

  • Mahowald, N. M., Randerson, J. T., Lindsay, K., Munoz, E., Doney, S. C., Lawrence, P., Schlunegger, S., Ward, D. S., Lawrence, D., & Hoffman, F. M. (2017). Interactions between land use change and carbon cycle feedbacks. Global Biogeochemical Cycles, 31, 96–113.

    Article  CAS  Google Scholar 

  • Malczewski, J. (2004). GIS-based land-use suitability analysis: a critical overview. Progress in Planning, 62, 3–65.

    Article  Google Scholar 

  • Mokany, K., Raison, R., & Prokushkin, A. S. (2006). Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 12, 84–96.

    Article  Google Scholar 

  • Norby, R. J., Hanson, P. J., O'Neill, E. G., Tschaplinski, T. J., Weltzin, J. F., Hansen, R. A., Cheng, W., Wullschleger, S. D., Gunderson, C. A., & Edwards, N. T. (2002). Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecological Applications, 12, 1261–1266.

    Google Scholar 

  • Nordhaus, W. (2007). Critical assumptions in the Stern Review on climate change. Science, 317, 201–202.

    Article  CAS  Google Scholar 

  • Pagiola, S. (2008). Payments for environmental services in Costa Rica. Ecological Economics, 65, 712–724.

    Article  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., & Canadell, J. G. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.

    Article  CAS  Google Scholar 

  • Panahi, M. (2005). Economic valuation of Hyrcanian forests. PhD thesis, University of Tehran, Karaj, Iran. 294 pp (in Persian).

  • Pearson, T., Walker, S. & Brown, S. (2013). Sourcebook for land use, land-use change and forestry projects. Washington DC., World Bank.

  • Poorzady, M., & Bakhtiari, F. (2009). Spatial and temporal changes of Hyrcanian forest in Iran. Forest-Biogeosciences and Forestry, 2, 198–206.

    Article  Google Scholar 

  • Rahimi, J., Ebrahimpour, M., & Khalili, A. (2013). Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Applied Climatology, 112, 409–418.

    Article  Google Scholar 

  • Raudsepp-Hearne, C., Peterson, G. D., & Bennett, E. (2010). Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences, 107, 5242–5247.

    Article  CAS  Google Scholar 

  • Rounsevell, M., Reginster, I., Araújo, M. B., Carter, T., Dendoncker, N., Ewert, F., House, J., Kankaanpää, S., Leemans, R., & Metzger, M. (2006). A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems & Environment, 114, 57–68.

    Article  Google Scholar 

  • Scharnweber, T., Rietschel, M., & Manthey, M. (2007). Degradation stages of the Hyrcanian forests in southern Azerbaijan. Archiv für Naturschutz und Landschaftsforschung, 46, 133–156.

    Google Scholar 

  • Scott-Brown, M., Sauer, G., Truswell, S., Olson, D., Rehbein, C., Robinson, L., Hughes-Field, K. & Kinnear, P. (2007). Ecosystem goods and services assessment - Southern Alberta. PHASE 2 report - version 2: Conceptual Linkages and Initial Assessment. Alberta Environment, Calgery, Canada.

  • Shahrokhzadeh, U., Sohrabi, H., & Copenheaver, C. A. (2015). Aboveground biomass and leaf area equations for three common tree species of Hyrcanian temperate forests in northern Iran. Botany, 93, 663–670.

    Article  CAS  Google Scholar 

  • Shangguan, W., Dai, Y., Duan, Q., Liu, B., & Yuan, H. (2014). A global soil data set for earth system modeling. Journal of Advances in Modeling Earth Systems, 6, 249–263.

    Article  Google Scholar 

  • Sharp, R. (2014). InVEST 3.0. 1 user guide. The Natural Capital Project. In. Stanford, CA. Available at: http://ncp-dev. stanford. edu/~ dataportal/invest-releases/documentation/current_release/(Accessed Aug 2014).

  • Sherrouse, B.C., Riegle, J.L. & Semmens, D.J. (2010). Social values for ecosystem services (SolVES): a GIS application for assessing, mapping, and quantifying the social values of ecosystem services-documentation and user manual, version 1.0. In. US Geological Survey.

  • Shooshtari, J. S., Hosseini, S., Esmaili-Sari, A., & Gholamalifard, M. (2012). Monitoring land cover change, degradation, and restoration of the Hyrcanian forests in northern Iran (1977−2010). International Journal of Environmental Sciences, 3, 1038–1056.

    Google Scholar 

  • Shooshtari, S., Shayesteh, K., Gholamalifard, M., Azari, M. & López-Moreno, J. (2017). Land cover change modelling in Hyrcanian forests, northern Iran: a landscape pattern and transformation analysis perspective. Cuadernos de Investigación Geográfica, in press.

  • Sil, Â., Fonseca, F., Gonçalves, J., Honrado, J., Marta-Pedroso, C., Alonso, J., Ramos, M., & Azevedo, J. C. (2017). Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: insights for management and planning. International Journal of Biodiversity Science, Ecosystem Services & Management, 13, 82–104.

    Article  Google Scholar 

  • Socolow, R. H. (2005). Can we bury global warming? Scientific American, 293, 49–55.

    Article  CAS  Google Scholar 

  • Socolow, R. H., & Pacala, S. W. (2006). A plan to keep carbon in check. Scientific American, 295, 50–57.

    Article  Google Scholar 

  • Soleimani, A., Hosseini, S., Massah, B. A., Jafari, M., & Francaviglia, R. (2017). Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). The Science of the Total Environment, 599, 1646–1657.

    Article  CAS  Google Scholar 

  • Stern, N.H. (2007). The economics of climate change: the Stern review. Cambridge University Press.

  • Tallis, H., Ricketts, T., Guerry, A., Wood, S., Sharp, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N. & Vigerstol, K. (2013). InVEST 2.5. 6 user’s guide.

  • Tol, R. S. (2009). The economic effects of climate change. Journal of Economic Perspectives, 23, 29–51.

    Article  Google Scholar 

  • Tol, R. (2017). The private benefit of carbon and its social cost. Working Paper Series, Department of Economics, University of Sussex. England.

  • Turner, K. G., Anderson, S., Gonzales-Chang, M., Costanza, R., Courville, S., Dalgaard, T., Dominati, E., Kubiszewski, I., Ogilvy, S., & Porfirio, L. (2016). A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecological Modelling, 319, 190–207.

    Article  Google Scholar 

  • Vahedi, A. A. (2017). Monitoring soil carbon pool in the Hyrcanian coastal plain forest of Iran: Artificial neural network application in comparison with developing traditional models. Catena, 152, 182–189.

    Article  CAS  Google Scholar 

  • Vahedi, A., Mataji, A., Babayi-Kafaki, S., Eshaghi-Rad, J., Hodjati, S., & Djomo, A. (2014). Allometric equations for predicting aboveground biomass of beech-hornbeam stands in the Hyrcanian forests of Iran. Journal of Forest Science, 60, 236–247.

    Article  Google Scholar 

  • Vahedi, A., Bijani-Nejad, A., & Djomo, A. (2016). Horizontal and vertical distribution of carbon stock in natural stands of Hyrcanian lowland forests: a case study, Nour Forest Park, Iran. Journal of Forest Science, 62, 501–510.

    Article  CAS  Google Scholar 

  • Veldkamp, A., & Fresco, L. (1996). CLUE: a conceptual model to study the conversion of land use and its effects. Ecological Modelling, 85, 253–270.

    Article  Google Scholar 

  • Veldkamp, A., & Lambin, E. F. (2001). Predicting land-use change. Agriculture, Ecosystems & Environment, 85, 1–6.

    Article  Google Scholar 

  • Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental Management, 30, 391–405.

    Article  Google Scholar 

  • Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004). Land use change modelling: current practice and research priorities. GeoJournal, 61, 309–324.

    Article  Google Scholar 

  • Villa, F., Ceroni, M., Bagstad, K., Johnson, G. & Krivov, S. (2009). ARIES (Artificial Intelligence for Ecosystem Services): a new tool for ecosystem services assessment, planning, and valuation. 11th Annual BIOECON Conference on Economic Instruments to Enhance the Conservation and Sustainable Use of Biodiversity, Conference Proceedings, Venice, Italy.

  • Wang, S., Wang, Q., Adhikari, K., Jia, S., Jin, X., & Liu, H. (2016). Spatial-temporal changes of soil organic carbon content in Wafangdian, China. Sustainability, 8, 1154.

    Article  Google Scholar 

  • You, W., Ji, Z., Wu, L., Deng, X., Huang, D., Chen, B., Yu, J. A., & He, D. (2017). Modeling changes in land use patterns and ecosystem services to explore a potential solution for meeting the management needs of a heritage site at the landscape level. Ecological Indicators, 73, 68–78.

    Article  Google Scholar 

  • Zarandian, A., Baral, H., Yavari, A. R., Jafari, H. R., Stork, N. E., Ling, M. A., & Amirnejad, H. (2016). Anthropogenic decline of ecosystem services threatens the integrity of the unique Hyrcanian (Caspian) forests in Northern Iran. Forests, 7, 51.

    Article  Google Scholar 

  • Zarandian, A., Baral, H., Stork, N. E., Ling, M. A., Yavari, A. R., Jafari, H. R., & Amirnejad, H. (2017). Modeling of ecosystem services informs spatial planning in lands adjacent to the Sarvelat and Javaherdasht protected area in northern Iran. Land Use Policy, 61, 487–500.

    Article  Google Scholar 

  • Zhou, G., Wei, X., Chen, X., Zhou, P., Liu, X., Xiao, Y., Sun, G., Scott, D. F., Zhou, S., & Han, L. (2015). Global pattern for the effect of climate and land cover on water yield. Nature Communications, 6, 5918.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this article would like to thank Mr. Majid Ramezani Mehrian, who has played a valuable role in providing us with the basic data.

Funding

This study as an Internal Research Project was supported by the Research Center for Environment and Sustainable Development, (RCESD), affiliated with Iran’s Department of Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardavan Zarandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarandian, A., Badamfirouz, J., Musazadeh, R. et al. Scenario modeling for spatial-temporal change detection of carbon storage and sequestration in a forested landscape in Northern Iran. Environ Monit Assess 190, 474 (2018). https://doi.org/10.1007/s10661-018-6845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6845-6

Keywords

Navigation