[go: up one dir, main page]

Skip to main content
Log in

Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Diel dissolved oxygen (DO) time series measured continuously using proximal sensors in situ for a temperate lake were denoised using discrete wavelet transform (DWT) with the orthogonal wavelet families of coiflet, daubechies, and symmlet with order of 10. Diel DO time series denoised were modeled using nine temporal artificial neural networks (ANNs) as a function of water level, water temperature, electrical conductivity, pH, day of year, and hour. Our results showed that time-lag recurrent network (TLRN) using denoised data emulated diel DO dynamics better than the best-performing TLRN using the original data, time-delay neural network (TDNN), and recurrent network (RNN). Daubechies basis dealt with diel DO data slightly better than the other bases given its coefficient of determination (r 2 = 87.1 %), while symmlet performed slightly better than the other bases in terms of root mean square error (RMSE = 1.2 ppm) and mean absolute error (MAE = 0.9 ppm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Akkoyunlu, A., Altun, H., & Cigizoglu, H. K. (2011). Depth-integrated estimation of dissolved oxygen in a lake. Journal of Environmental Engineering, 137(10), 961–967.

    Article  CAS  Google Scholar 

  • Cazelles, B., Chavez, M., Berteaux, D., Ménard, F., Vik, J. O., Jenouvrier, S., & Stenseth, N. C. (2008). Wavelet analysis of ecological time series. Oecologia, 156, 287–304.

    Article  Google Scholar 

  • Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., & Melack, J. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 171–184.

    Article  CAS  Google Scholar 

  • Coloso, J. J., Cole, J. J., Hanson, P. C., & Pace, M. L. (2008). Depth-integrated, continuous estimates of metabolism in a clear-water lake. Canadian Journal of Fisheries & Aquatic Sciences, 65, 712–722.

    Article  Google Scholar 

  • Dean, W. E., & Gorham, E. (1998). Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology, 26, 535–538.

    Article  Google Scholar 

  • Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.

    Article  Google Scholar 

  • Evrendilek, F. (2013). Assessing neural networks with wavelet denoising and regression models in predicting diel dynamics of eddy covariance-measured latent and sensible heat fluxes and evapotranspiration. Neural Computing & Applications, doi: 10.1007/s00521-012-1240-7 (in press).

  • Evrendilek, F., Karakaya, N., Aslan, G., & Ertekin, C. (2011). Using eddy covariance sensors to quantify carbon metabolism of peatlands: a case study in Turkey. Sensors, 11, 522–538.

    Article  CAS  Google Scholar 

  • Fuchs, E., Gruber, C., Reitmaier, T., & Sick, B. (2009). Processing short-term and long-term information with a combination of polynomial approximation techniques and time-delay neural networks. IEEE on Transactions of Neural Networks, 20, 1450–1462.

    Article  Google Scholar 

  • Giusti, E., & Marsili-Libelli, S. (2009). Spatio-temporal dissolved oxygen dynamics in the Orbetello lagoon by fuzzy pattern recognition. Ecological Modelling, 220, 2415–2426.

    Article  CAS  Google Scholar 

  • Hanbay, D., Turkoglu, I., & Demir, Y. (2007). Prediction of chemical oxygen demand (COD) based on wavelet decomposition and neural networks. CLEAN-Soil Air & Water, 35, 250–254.

    Article  CAS  Google Scholar 

  • Haykin, S. (1999). Neural network: a comprehensive foundation. USA: Prentice Hall.

    Google Scholar 

  • He, L., Huang, G. H., Zeng, G. M., & Lu, H. W. (2008). Wavelet-based multiresolution analysis for data cleaning and its application to water quality management systems. Expert Systems with Applications, 35, 1301–1310.

    Article  Google Scholar 

  • Kang, S. J., & Lin, H. (2007). Wavelet analysis of hydrological and water quality signals in an agricultural watershed. Journal of Hydrology, 338, 1–14.

    Article  CAS  Google Scholar 

  • Karakaya, N. (2011). Does different versus equal daytime and night-time respiration matter for quantification of lake metabolism using diel dissolved oxygen cycles? International Journal of Limnology, 47, 251–257.

    Article  Google Scholar 

  • Karakaya, N., Evrendilek, F., & Gungor, K. (2011). Modeling and validating long-term dynamics of diel dissolved oxygen with particular reference to pH in a temperate shallow lake (Turkey). CLEAN-Soil Air & Water, 39, 966–971.

    Article  CAS  Google Scholar 

  • Kisi, O. (2011). Evapotranspiration modeling using a wavelet regression model. Irrigation Science, 29, 241–252.

    Google Scholar 

  • Koirala, S. R., Gentry, R. W., Mulholland, P. J., Perfect, E., & Schwartz, J. S. (2010). Time and frequency domain analyses of high-frequency hydrologic and chloride data in an east Tennessee watershed. Journal of Hydrology, 387, 256–264.

    Article  CAS  Google Scholar 

  • Koskela, T. (2003). Neural network methods in analyzing and modelling time varying processes. Helsinki University of Technology Laboratory of Computational Engineering Publications Report B35.

  • Langman, O. C., Hanson, P. C., Carpenter, S. R., & Hu, Y. H. (2010). Control of dissolved oxygen in northern temperate lakes over scales ranging from minutes to days. Aquatic Biology, 9, 193–202.

    Article  Google Scholar 

  • Mallat, S. (1999). A wavelet tour of signal processing. Waltham: Academic.

    Google Scholar 

  • Marsili-Libelli, S. (2004a). Fuzzy pattern recognition of circadian cycles in ecosystems. Ecological Modelling, 174, 67–84.

    Article  CAS  Google Scholar 

  • Marsili-Libelli, S. (2004b). Fuzzy prediction of the algal blooms in the Orbetello lagoon. Environmental Modelling & Software, 19, 799–808.

    Article  Google Scholar 

  • Najah, A. A., El-Shafie, A., Karim, O. A., & Jaafar, O. (2011). Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations. Hydrology and Earth System Sciences, 15, 2693–2708.

    Article  CAS  Google Scholar 

  • Nguyen, G. H., Bouzerdoum, A., & Phung, S. L. (2008). Efficient supervised learning with reduced training exemplars. International Joint Conference on Neural Networks, pp. 2981–2987

  • Oza, N. C. (2005). Online bagging and boosting. In IEEE International Conference on Systems, Man and Cybernetics 3 (pp. 2340–2345).

    Google Scholar 

  • Principe, J. C., Jyh-Ming, K., & Celebi, S. (1994). An analysis of the gamma memory in dynamic neural networks. IEEE Transactions on Neural Networks, 5, 331–337.

    Article  CAS  Google Scholar 

  • Recknagel, F., French, M., Harkonen, P., & Yabunanka, K. I. (1997). Artificial neural network approach for modelling and prediction of algal bloom. Ecological Modelling, 96, 11–28.

    Article  CAS  Google Scholar 

  • Saad, D. (1998). Online learning in neural networks. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sai, K., Harada, M., Yoshida, I., Hiramatsu, K., & Mori, M. (2007). Real-time prediction of dissolved oxygen in eutrophic lake using feedback artificial neural network models. Transactions of the Japanese Society of Irrigation Drainage & Reclamation Engineering, 75, 47–54.

    Google Scholar 

  • Sattari, M. T., Yurekli, K., & Pal, M. (2012). Performance evaluation of artificial neural network approaches in forecasting reservoir inflow. Applied Mathematical Modelling, 36, 2649–2657.

    Article  Google Scholar 

  • Ticay-Rivas, J. R., Pozo-Baños, M. D., Eberhard, W. G., Alonso, J. B., & Travieso, C. M. (2013). Spider specie identification and verification based on pattern recognition of it cobweb. Expert Systems with Applications, 40, 4213–4225.

    Article  Google Scholar 

  • Wali, M. K., Evrendilek, F., West, T., Watts, S., Pant, D., Gibbs, H., & McClead, B. (1999). Assessing terrestrial ecosystem sustainability: usefulness of regional carbon and nitrogen models. Nature & Resources, 35, 20–33.

    Google Scholar 

  • Wilamowski, B. M., Cotton, N. J., Kaynak, O., & Dundar, G. (2008). Computing gradient vector and Jacobian matrix in arbitrarily connected neural networks. IEEE Transactions on Industrial Electronics, 55(10), 3784–3790.

    Article  Google Scholar 

  • Williamson, C. E., Dodds, W., Kratz, T. K., & Palmer, M. A. (2008). Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Frontiers in Ecology and the Environment, 6, 247–254.

    Article  Google Scholar 

  • Zapranis, A., & Alexandridis, A. (2011). Modeling and forecasting cumulative average temperature and heating degree day indices for weather derivative pricing. Neural Computing & Applications, 20(6), 787–801.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Scientific and Technological Research Council of Turkey (TÜBİTAK) for funding our projects (CAYDAG-109Y186 and CAYDAG-111Y059). Grateful thanks are extended to two anonymous reviewers for their constructive comments which greatly improved the previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Evrendilek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evrendilek, F., Karakaya, N. Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks. Environ Monit Assess 186, 1583–1591 (2014). https://doi.org/10.1007/s10661-013-3476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3476-9

Keywords

Navigation