[go: up one dir, main page]

Skip to main content
Log in

Efficacy of a bacterial preparation of Aneurinibacillus migulanus against downy mildew of cucumber (Pseudoperonospora cubensis)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A bacterial preparation of Aneurinibacillus migulanus white (a phenotype isolated in our laboratory after subculturing of A. migulanus WT in TSB medium) was investigated in the host-pathogen system cucumber (Cucumis sativus) and downy mildew (Pseudoperonospora cubensis). With a 1:1 diluted non-separated liquid culture (containing gramicidin S attached to the spores and a biosurfactant released into the broth), an efficacy above 90% was achieved, when applied protectively. Curative or systemic effects were not found. It appeared, that the culture had no influence on the pathogen once it had established in the plant. In vitro, the non-separated liquid preparation of A. migulanus white and the separated spores (both 1:1 diluted) almost completely inhibited the release and the survival of zoospores of another oomycete, Phytophthora infestans. On leaf discs, released and encysted zoospores of P. cubensis were found, but only few germ tubes were formed. In vitro growth of mycelia of P. infestans was inhibited by pure gramicidin S from a concentration of 25 μg ml−1. With 100 μg ml−1 an inhibitory effect of about 85% compared with the water control was recorded. The treatment of cucumber plants with liquid culture of A. migulanus E1 (1:1 diluted; no production of gramicidin S, only biosurfactant) significantly controlled P. cubensis by reducing the time of leaf wetness. For a drying time of plants of 30 min before incubation at 100% relative humidity, the efficacy was 71% when calculated against the water control of the same drying time. Overall, we demonstrated that both, gramicidin S containing spores and the biosurfactant of A. migulanus white liquid culture contributed to the control of P. cubensis on cucumber, based on different modes of action. Spores carrying gramicidin S exhibit a direct effect both, on mycelia as well as on sporangia and zoospores of the oomycetes P. cubensis and P. infestans. The supernatant worked mainly by the effect of faster drying of the leaf surface. We conclude that a liquid culture of A. migulanus has a high potential to control downy mildew on cucumbers and other oomycete diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267.

    Article  CAS  Google Scholar 

  • Afonin, S., Dürr, U. H. N., Wadhwani, P., Salgado, J., & Ulrich, A. S. (2008). Solid state NMR structure analysis of the antimicrobial peptide gramicidin S in lipid membranes: Concentration-dependent realignment and self assembly as a β-barrel. Topics of Current Chemistry, 273, 139–154.

    Article  CAS  Google Scholar 

  • Alenezi, F. N., Fraser, S., Bełka, M., Doğmuş, T. H., Heckova, Z., Oskay, F., Belbahri, L., & Woodward, S. (2016). Biological control of Dothistroma needle blight on pine with Aneurinibacillus migulanus. Forest Pathology, 46, 555–558.

    Article  Google Scholar 

  • Alenezi, F. N., Rekik, I., Chenari Bouket, A., Luptakova, L., Weitz, H. J., Rateb, M. E., Jaspars, M., Woodward, S., & Belbahri, L. (2017). Increased biological activity of Aneurinibacillus migulanus strains correlates with the production of new gramicidin secondary metabolites. Frontiers in Microbiology, 8(517), 1–11.

    Google Scholar 

  • Berditsch, M., Afonin, S., & Ulrich, A. S. (2007). The ability of Aneurinibacillus migulanus (Bacillus brevis) to produce the antibiotic gramicidin S is correlated with phenotype variation. Applied and Environmental Microbiology, 73(20), 6620–6628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury, S. P., Hartmann, A., Gau, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – A review. Frontiers in Microbiology, 6(780), 1–11.

    Google Scholar 

  • Cohen, Y., & Coffey, M. D. (1986). Systemic fungicides and the control of oomycetes. Annual Review of Phytopathology, 24, 311–338.

    Article  CAS  Google Scholar 

  • Colucci, S. J., & Holmes, G. J. (2010). Downy mildews of cucurbits. The Plant Health Instructor, https://doi.org/10.1094/PHI-I-2010-0825-01.

  • Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, S. G. (1993). Biological control of Botrytis cinerea by Bacillus brevis on protected Chinese cabbage. PhD Thesis, University of Aberdeen.

  • Edwards, S. G., & Seddon, B. (2000). Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. Letters of Applied Microbiology, 91, 652–659.

    Article  Google Scholar 

  • Emmert, E. A. B., & Handelsman, J. (1999). Biocontrol of plant disease: A (gram-) positive perspective. FEMS Microbiology Letters, 171, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Gause, G. F., & Brazhnikova, M. G. (1944). Gramicidin S and its use in the treatment of infected wounds. Nature, 3918, 703.

    Article  Google Scholar 

  • Hamer, E. C., Moore, C. B., & Denning, D. W. (2006). Comparison of two fluorescent whiteners, Calcofluor and Blankophor, for the detection of fungal elements in clinical specimens in the diagnostic laboratory. Clinical Microbiology and Infection, 12(2), 181–184.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann, M., Berditsch, M., Hawecker, J., Ardakani, M. F., Gerthsen, D., & Ulrich, A. S. (2010). Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrobial Agents and Chemotherapy, 54(8), 3132–3142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyer, M.-K. (2008). Iterative NPRS-Systeme, Charakterisierung der gramicidin S Thioesterase und der analyse der Thiocoralin-3-Hydroxychinaldinsäure-Biosynthese. PhD Thesis, Philipps-University Marburg.

  • Jänsch, S., & Römbke, J. (2009). Einsatz von Kupfer als Pflanzenschutzmittel-Wirkstoff: Ökologische Auswirkungen der Akkumulation von Kupfer im Boden, Forschungsbericht 360 03 040. Ed. Umweltbundesamt, http://www.umweltbundesamt.de. Accessed 16 June 2017.

  • Jelokhani-Niaraki, M., Hodges, R. S., Meissner, J. E., Hassenstein, U. E., & Wheaton, L. (2008). Interaction of gramicidin S and its aromatic amino-acid analog with phospholipid membranes. Biophysical Journal, 95, 3306–3321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz, E., & Demain, A. L. (1977). The peptide antibiotics of bacillus: Chemistry, biogenesis and possible functions. American Society for Microbiology, 41(2), 449–474.

    CAS  Google Scholar 

  • Kondejewski, L. H., Farmer, S. W., Wishart, D. S., Hancock, R. E. W., & Hodges, R. S. (1996). Gramicidin S is active against both gram-positive and gram-negative bacteria. International Journal of Peptide and Protein Research, 47, 460–466.

    Article  CAS  PubMed  Google Scholar 

  • Lazaridis, I. (1981). Spore characteristics of wild-type and gramicidin S-mutants of Bacillus brevis Nagano. PhD Thesis, University of Aberdeen.

  • Marx, P., & Gärber, U. (2009). Falscher Mehltau an Gurke - Regulierung durch gezielte Klimaführung und Sortenwahl im Unterglasanbau. In J. Mayer (Hrsg.), et al., Beiträge zur 10. Wissenschaftstagung Ökologischer Landbau: Werte – Wege – Wirkungen: Biolandbau im Spannungsfeld zwischen Ernährungssicherung, Markt und Klimawandel Band 1 (pp. 352–355). Berlin: Verlag Dr. Köster.

  • Marx, P., Gärber, U., Gebelein, D. (2010). Falscher Mehltau an Gurke im ökologischen Gemüseanbau unter Glas – Regulierung durch gezielte Klimasteuerung. 57. Deutsche Pflanzenschutztagung, Julius-Kühn-Archiv, 428, 452.

  • Matthews, P. W. (2000). Effects of cations, Natural toxins and other factors on infection-related behavior of zoosporic fungi Pythium aphanidermatum and Phytophthora parasitica. PhD Thesis, University of Edinburgh.

  • McSpadden B. B., & Fravel D. R. (2002). Biological control of plant pathogens: Research, commercialization and application in the USA. Department of Plant Pathology, The Ohio State University-OARDC, Wooster.

  • Mitchell, H. J., & Hardham, A. R. (1999). Characterisation of the water expulsive vacuole in Phytophthora nicotianae zoospores. Protoplasma, 206, 118–130.

    Article  Google Scholar 

  • Nandi, S., & Seddon, B. (1978). Evidence for gramicidin S functioning as a bacterial hormone specifically regulating spore outgrowth in Bacillus brevis strain Nagano. Biochemical Society Transactions, 6, 409–411.

    Article  CAS  PubMed  Google Scholar 

  • Pal, K. K., & McSpadden Gardener, B. (2006). Biological control of plant pathogens. The Plant Health Instructor, https://doi.org/10.1094/PHI-A-2006-1117-02.

  • Salgado, J., Grage, S. L., Kondejewski, L. H., Hodges, R. S., McElhaney, R. N., & Ulrich, A. S. (2001). Membrane-bound structure and alignment of the antimicrobial peptide gramicidin S derived from angular and distance constrains by solid state 19F-NMR. Journal of Biomolecular NMR, 21, 191–208.

    Article  CAS  PubMed  Google Scholar 

  • Savory, E. A., Granke, L. L., Quesada-Ocampo, L. M., Varbanova, M., Hausbeck, M. K., & Day, B. (2011). The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Molecular and Plant Pathology, 12(3), 217–226.

    Article  Google Scholar 

  • Scherf, A., Schuster, C., Marx, P., Gärber, U., Konstantinidou-Doltsinis, S., Schmitt, A. (2010). Control of downy mildew (Pseudoperonospora cubensis) of greenhouse grown cucumbers with alternative biological agents. In Communications in Agriculture and Applied Biological Sciences 75(4) (pp. 541–554), Ghent University.

  • Schmitt, A., Seddon, B. (2005). Biocontrol of plant pathogens with microbial BCAs and plant extracts – advantages and disadvantages of single and combined use. In H.-W. Dehne (Ed.). et al., Modern Fungicides and Antifungal Compounds IV, Proceedings of the 14th International Reinhardsbrunn Symposium (pp. 205–225), Hamshire UK: BCPC, Alton.

  • Schuster, C. (2012). Biologische Bekämpfung des Falschen Mehltaus an der Gurke (Pseudoperonospora cubensis), Wirkung und Wirkweise von Aneurinibacillus migulanus und Federmohn Extrakt. PhD Thesis, Technical University Darmstadt.

  • Schuster, C., Gärber, U., Leinhos, G., & Schmitt, A. (2010). Wirkung von Aneurinibacillus migulanus gegen phytopathogene Oomyceten. In 57. Deutsche Pflanzenschutztagung. Julius-Kühn-Archiv, 428, 447.

    Google Scholar 

  • Seddon, B., Edwards, S., Markellou, E., & Malathrakis, N. E. (1997). Bacterial antagonist – Fungal pathogen interactions on plant aerial surface. In A. C. Gange & V. K. Brown (Eds.), Multitrophic Interactions in Terrestrial Systems. The 36th symposium of the British society (pp. 5–25). London: Blackwell Science.

    Google Scholar 

  • Seddon, B., McHugh, R. C., Schmitt, A., Koch, E., Graham, N., Wilson, M., Eibel, P., Stephan, D., Dertzakis, D., Lasaraki, I., Tsomlexoglou, E., Carvalho, S. M., Marshall, D., Daggas, T., White, D., Bouquellah, N. A., Woodward, S., Paloukidou, E., Allan, E. J. (2008). Disease control with Bacillus brevis: update and future prospects. In H.-W. Dehne (Ed.). et al., Modern Fungicides and Anifungal Compounds V, Proceedings of the 15th International Reinhardsbrunn Symposium (pp. 253–262), Hamshire UK: BCPC, Alton.

  • Stanghellini, M. E., & Miller, R. M. (1997). Biosurfactants, their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Disease, 81(1), 5–12.

    Article  Google Scholar 

  • Takagi, H., Shida, O., Kadowaki, K., Komagata, K., & Udaka, S. (1993). Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp. nov., Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. International Journal of Systematic Bacteriology, 43(2), 221–231.

    Article  CAS  PubMed  Google Scholar 

  • Ulloa-Ogaz, A. L., Muñoz-Castellanos, L. N., Nevárez-Moorillón, G. V. (2015). Biocontrol of phytopathogens: Antibiotic production as mechanism of control. The battle against microbial pathogens. In A. Méndez-Vilas (Ed.), Basic Science, Technological Advances and Educational Programs. Series 5(1) 305–309, Spain: Formatex.

  • Ullrich, C. I., Kleespies, R. G., Enders, M., & Koch, E. (2009). Journal für Kulturpflanzen, 61(3), 82–90.

    Google Scholar 

  • Walker, C. A., & van West, P. (2007). Zoospore development in oomycetes. Fungal Biology Reviews, 21, 10–18.

    Article  Google Scholar 

  • Walker, R., Powell, A. A., & Seddon, B. (1998). Bacillus isolates from the spermosphere of peas and dwarf French peas with antifungal activity against Botrytis cinerea and Pythium species. Journal of Applied Microbiology, 84, 791–801.

    Article  CAS  PubMed  Google Scholar 

  • Wilbois, K.-P., Kauer, R., Fader, B., Kienzle, J., Haug, P., Fritzsche-Martin, A., Drescher, N., Reiners, E., & Röhring, P. (2009). Kupfer als Pflanzenschutzmittel unter besonderer Berücksichtigung des Ökologischen Landbaus. Journal für Kulturpflanzen, 61(4), 140–152.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Karin Bald and Mona von Eitzen-Ritter (JKI, Institute for Biological Control) for their technical assistance. We also are grateful to Dr. Barrie Seddon for supply with of A. migulanus, for discussions and for critical reading of the manuscript. The project was funded by the German Federal Ministry of Food and Agriculture (BMEL, project 06OE188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Schuster.

Ethics declarations

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interests

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuster, C., Schmitt, A. Efficacy of a bacterial preparation of Aneurinibacillus migulanus against downy mildew of cucumber (Pseudoperonospora cubensis). Eur J Plant Pathol 151, 439–450 (2018). https://doi.org/10.1007/s10658-017-1385-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1385-4

Keywords

Navigation