[go: up one dir, main page]

Skip to main content
Log in

Lead sorption characteristics of various chicken bone part-derived chars

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Recycling food waste for beneficial use is becoming increasingly important in resource-limited economy. In this study, waste chicken bones of different parts from restaurant industry were pyrolyzed at 600 °C and evaluated for char physicochemical properties and Pb sorption characteristics. Lead adsorption isotherms by different chicken bone chars were carried out with initial Pb concentration range of 1–1000 mg L−1 at pH 5. The Pb adsorption data were better described by the Langmuir model (R2 = 0.9289–0.9937; ARE = 22.7–29.3%) than the Freundlich model (R2 = 0.8684–0.9544; ARE = 35.4–72.0%). Among the chars derived from different chicken bone parts, the tibia bone char exhibited the highest maximum Pb adsorption capacity of 263 mg g−1 followed by the pelvis (222 mg g−1), ribs (208 mg g−1), clavicle (179 mg g−1), vertebrae (159 mg g−1), and humerus (135 mg g−1). The Pb adsorption capacities were significantly and positively correlated with the surface area, phosphate release amount, and total phosphorus content of chicken bone chars (r ≥ 0.9711). On the other hand, approximately 75–88% of the adsorbed Pb on the chicken bone chars was desorbable with 0.1 M HCl, indicating their recyclability for reuse. Results demonstrated that chicken bone char could be used as an effective adsorbent for Pb removal in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdolali, A., Ngo, H. H., Guo, W., Zhou, J. L., Du, B., Wei, Q., et al. (2015). Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies. Bioresource Technology, 193, 477–487.

    Article  CAS  Google Scholar 

  • Adhikari, R., & Singh, M. V. (2003). Sorption characteristics of lead and cadmium in some soils of India. Geoderma, 114, 81–92.

    Article  CAS  Google Scholar 

  • Adise, S., Gavdanovich, I., & Zellner, D. A. (2015). Looks like chicken: Exploring the law of similarity in evaluation of foods of animal origin and their vegan substitutes. Food Quality and Preference, 41, 52–59.

    Article  Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–23.

    Article  CAS  Google Scholar 

  • Ahn, C. K., Park, D., Woo, S. H., & Park, J. M. (2009). Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. Journal of Hazardous Materials, 164(2–3), 1130–1136.

    Article  CAS  Google Scholar 

  • Aksu, Z., Gonen, F., & Demircan, Z. (2002). Biosorption of chromium(VI) ions by Mowital®B30H resin immobilized activated sludge in a packed bed: Comparison with granular activated carbon. Process Biochemistry, 38, 175–186.

    Article  CAS  Google Scholar 

  • Ali, I. (2010). The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Separation and Purification Reviews, 39, 95–171.

    Article  CAS  Google Scholar 

  • APHA-AWWA-WEF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Bagbi, Y., Sarswat, A., Mohan, D., Pendey, A., & Solanki, P. R. (2016). Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. Journal of Environmental Chemical Engineering, 4, 4237–4247.

    Article  CAS  Google Scholar 

  • Bohn, H., McNeal, G., & O’connor, G. (1979). Soil chemistry. New York: A Wiley-Interscience Publication.

    Google Scholar 

  • Boisson, J., Mench, M., Vangronsveld, J., Ruttens, A., Kopponen, P., & DeKoe, T. (1999). Immobilization of trace metals and arsenic by different soil additives: Evaluation by means of chemical extractions. Communications Soil Science and Plant Analysis, 30, 365–387.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Rhue, D. R., & Appel, C. S. (2004). Mechanisms of lead, copper, and zinc retention by phosphate rock. Environmental Pollution, 131, 435–444.

    Article  CAS  Google Scholar 

  • Cao, X. D., Wahbi, A., Ma, L. Q., Li, B., & Yang, Y. L. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 164, 555–564.

    Article  CAS  Google Scholar 

  • Çelen, I., Buchanan, J. R., Burns, R. T., Robinson, R. B., & Raman, D. R. (2007). Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure. Water Research, 41, 1689–1696.

    Article  CAS  Google Scholar 

  • Chen, S., Ma, Y., Chen, L., Wang, L., & Guo, H. (2010). Comparison of Pb(II) immobilized by bone char meal and phosphate rock: Characterization and kinetic study. Archives of Environmental Contamination and Toxicology, 58, 24–32.

    Article  CAS  Google Scholar 

  • Chen, S. B., Zhu, Y. G., Ma, Y. B., & McKay, G. (2006). Effect of bone char application on Pb bioavailability in a Pb-contaminated soil. Environmental Pollution, 139, 433–439.

    Article  CAS  Google Scholar 

  • Choy, K. K. H., & McKay, G. (2005). Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model. Chemosphere, 60, 1141–1150.

    Article  CAS  Google Scholar 

  • Cotter-Howells, J., & Caporn, S. (1996). Remediation of contaminated land by formation of heavy metal phosphates. Applied Geochemistry, 11, 335–342.

    Article  CAS  Google Scholar 

  • Demiral, H., & Güngör, C. (2016). Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. Journal of Cleaner Production, 124, 103–113.

    Article  CAS  Google Scholar 

  • Dimović, S., Smičiklas, I., Plećaš, I., Antonović, D., & Mitrić, M. (2009). Comparative study of differently treated animal bones for Co2+ removal. Journal of Hazardous Materials, 164, 279–287.

    Article  CAS  Google Scholar 

  • Ding, W., Dong, X., Ime, I. M., Gao, B., & Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68–74.

    Article  CAS  Google Scholar 

  • Donat, R., Akdogan, A., Erdem, E., & Cetisli, H. (2005). Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science, 286(1), 43–52.

    Article  CAS  Google Scholar 

  • Eren, E., Afsin, B., & Onal, Y. (2009). Removal of lead ions by acid activated and manganese oxide-coated bentonite. Journal of Hazardous Materials, 161, 677–685.

    Article  CAS  Google Scholar 

  • Ge, H., Hua, T., & Chen, X. (2016). Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. Journal of Hazardous Materials, 308, 225–232.

    Article  CAS  Google Scholar 

  • Goff, M. G., Lambers, F. M., Nguyen, T. M., Sung, J., Rimnac, C. M., & Hernandez, C. J. (2015). Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces. Bone, 79, 8–14.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Al Hayat, M., Singh, A. K., & Pal, M. K. (2009). Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases. Analytica Chimica Acta, 634, 36–43.

    Article  CAS  Google Scholar 

  • Gustafsson, J. P. (2005). Visual MINTEQ, ver 2.32. Royal Institute of Technology, Stockholm, Sweden, Department of Land and Water Resources Engineering.

  • Hettiarachchi, G. M., Pierzynski, G. M., & Ransom, M. D. (2001). In situ stabilization of soil lead using phosphorus. Journal of Environmental Quality, 30, 1214–1221.

    Article  CAS  Google Scholar 

  • Hodson, M. E., Valsami-Jones, E., Cotter-Howells, J. D., Dubbin, W. E., Kemp, A. J., & Thornton, I. (2000). Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soils—A leaching column study. Environmental Pollution, 112, 233–243.

    Article  Google Scholar 

  • Inyang, M., Gao, B., Pullammanappalili, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101(22), 8868–8872.

    Article  CAS  Google Scholar 

  • Ip, A. W. M., Barford, J. P., & McKay, G. (2009). Reactive black dye adsorption/desorption onto different adsorbents: Effect of salt, surface chemistry, pore size and surface. Journal of Colloid and Interface Science, 337, 32–38.

    Article  CAS  Google Scholar 

  • Jiang, S., Nguyen, T. A. H., Rudolph, V., Yang, H., Zhang, D., Ok, Y. S., et al. (2017). Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environmental Geochemistry and Health, 39, 403–415.

    Article  CAS  Google Scholar 

  • Kizilkaya, B., Tekinay, A. A., & Dilgin, Y. (2010). Adsorption and removal of Cu(II) ions from aqueous solution using pretreated fish bones. Desalination, 264(1–2), 37–47.

    Article  CAS  Google Scholar 

  • Kizilkaya, B., & Tekmay, A. A. (2014). Utilization of removal Pb(II) ions from aqueous environments using waste fish bone by ion exchange. Journal of Chemistry, 2014, 1–12.

    Article  CAS  Google Scholar 

  • Li, J., Hong, Y., Kim, J. H., Qin, P., Kim, M. J., & Kim, H. Y. (2015). Multiplex PCR for simultaneous identification of turkey, ostrich, chicken, and duck. Applied Biological Chemistry, 58(6), 887–893.

    CAS  Google Scholar 

  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., & Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46, 854–862.

    Article  CAS  Google Scholar 

  • Ma, Q. Y., Tralna, S. J., Logan, T. J., & Ryan, J. A. (1994). Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environmental Science and Technology, 28, 1219–1228.

    Article  CAS  Google Scholar 

  • Martins, J. I., Orfao, J. J. M., & Soares, O. S. G. P. (2017). Sorption of copper, nickel and cadmium on bone char1. Protection of Metals and Physical Chemistry of Surfaces, 53, 618–627.

    Article  CAS  Google Scholar 

  • Mielke, H. W., Gonzales, C., Powell, E., & Mielke, P. W., Jr. (2008). Urban soil-lead (Pb) footprint: retrospective comparison of public and private properties in New Orleans. Environmental Geochemistry and Health, 30, 231–242.

    Article  CAS  Google Scholar 

  • Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: A review. Environmental Chemistry Letters, 6, 121–133.

    Article  CAS  Google Scholar 

  • MOE. (2002). The Korean Standard Test (KST) Methods for Soils (in Korean). Kyunggi: Korean Ministry of Environment.

    Google Scholar 

  • Moreno-Piraján, J. C., Cómez-Cruz, R., García-Cuello, V. S., & Giraldo, L. (2010). Binary system Cu(II)/Pb(II) adsorption on activated carbon obtained by pyrolysis of cow bone study. Journal of Analytical and Applied Pyrolysis, 89, 122–128.

    Article  CAS  Google Scholar 

  • Noeline, B. F., Manohar, D. M., & Anirudhan, T. S. (2005). Kinetic and equilibrium modeling of lead(II) sorption from water and wastewater by polymerized banana stem in a batch reactor. Separation and Purification Technology, 4(2), 131–140.

    Article  CAS  Google Scholar 

  • Ozdes, D., Gundogdu, A., Kemer, B., Duran, C., Senturk, H. B., & Soylak, M. (2009). Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 166, 1480–1487.

    Article  CAS  Google Scholar 

  • Park, J. H., Ok, Y. S., Kim, S. H., Kang, S. W., Cho, J. S., Heo, J. S., et al. (2015). Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption. Applied Biological Chemistry, 58(5), 751–760.

    CAS  Google Scholar 

  • Patinha, C., Reis, A. P., Dias, C., Cachada, A., Adão, R., Martins, H., et al. (2012). Lead availability in soils from Portugal’s Centre Region with special reference to bioaccessibility. Environmental Geochemistry and Health, 34, 213–227.

    Article  CAS  Google Scholar 

  • Paz-Ferreiro, J., Lu, H., Fu, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth Sciences, 5, 65–75.

    Article  Google Scholar 

  • Piccirillo, C., Pereira, S. I. A., Marques, A. P. G. C., Pullar, R. C., Tobaldi, D. M., Pintado, M. E., et al. (2013). Bacteria immobilisation on hydroxyapatite surface for heavy metals removal. Journal of Environmental Management, 121, 87–95.

    Article  CAS  Google Scholar 

  • Postma, J., Clematis, F., Nijhuis, E. H., & Someus, E. (2013). Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f. sp. radices lycopersici in tomato. Biological Control, 67, 284–291.

    Article  CAS  Google Scholar 

  • Qian, T., Zhang, X., Hu, J., & Jiang, H. (2013). Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere, 93, 2069–2075.

    Article  CAS  Google Scholar 

  • Reynel-Avila, H. E., Mendoza-Castillo, D. I., & Bonilla-Petriciolet, A. (2016). Relevance of anionic dye properties on water decolorization performance using bone char: Adsorption kinetics, isotherm and breakthrough curves. Journal of Molecular Liquids, 219, 425–434.

    Article  CAS  Google Scholar 

  • Saleh, T. A., Gupta, V. K., & Al-Saadi, A. A. (2013). Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study. Journal of Colloid and Interface Science, 396, 264–269.

    Article  CAS  Google Scholar 

  • Sanderson, P., Naidu, R., Bolan, N., Lim, J. E., & Ok, Y. S. (2015). Chemical stabilization of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation. Journal of Hazardous Material, 299, 395–403.

    Article  CAS  Google Scholar 

  • Siebers, N., Godlinski, F., & Leinweber, P. (2014). Bone char as phosphorus fertilizer involved in cadmium immobilization in lettuce, wheat, and potato cropping. Journal of Plant Nutrition and Soil Science, 117, 75–83.

    Article  CAS  Google Scholar 

  • Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research, 48(6–7), 516–525.

    Article  CAS  Google Scholar 

  • Smičiklas, I., Dimović, S., Plećaš, I., & Mitrić, M. (2006). Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Research, 40(12), 2267–2274.

    Article  CAS  Google Scholar 

  • Sneddon, I. R., Orueetxebarria, M., Hodson, M. E., Schofield, P. F., & Valsami-Jones, E. (2006). Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: A leaching column study. Environmental Pollution, 144, 816–825.

    Article  CAS  Google Scholar 

  • Spliethoff, H. M., Mitchell, R. G., Shayler, H., Marquez-Bravo, L. G., Russell-Anelli, J., Ferenz, G., et al. (2016). Estimated lead (Pb) exposures for a population of urban community gardeners. Environmental Geochemistry and Health, 38, 955–971.

    Article  CAS  Google Scholar 

  • Sun, X. F., Liu, C., Ma, Y., Wang, S. G., Gao, B. Y., & Li, X. M. (2011). Enhanced Cu(II) and Cr(VI) biosorption capacity on poly (ethylenimine) grafted aerobic granular sludge. Colloids and Surfaces B, 82(2), 456–462.

    Article  CAS  Google Scholar 

  • Taniguchi, N., Fujibayashi, S., Takemoto, M., Sasaki, K., Otsuki, B., Nakamura, T., et al. (2016). Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science and Engineering C, 59, 690–701.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Klasson, K. T., Wartelle, L. H., & Lima, I. M. (2011). Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere, 82, 1431–1437.

    Article  CAS  Google Scholar 

  • Udeigwe, T. K., Eze, P. N., Teboh, J. M., & Stietiya, M. H. (2011). Application, chemistry, and environmental implications of contaminant immobilization amendments on agricultural soil and water quality. Environment International, 37, 258–267.

    Article  CAS  Google Scholar 

  • Volesky, B. (1994). Advanced in biosorption of metals: Selection of biomass types. FEMS Microbiology Reviews, 14, 291–302.

    Article  CAS  Google Scholar 

  • Xu, X., Cao, X., & Zhao, L. (2013). Comparison of rice husk- and dairy manure-derived biochar for simultaneously removing heavy metals from aqueous solution: Role of mineral components in biochars. Chemosphere, 92, 955–961.

    Article  CAS  Google Scholar 

  • Zhang, Y., Jiang, J., & Chen, M. (2008). MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash. Journal of Environmental Sciences, 20(11), 1398–1402.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP), [NRF-2017R1A2B4004635], and the Louisiana Agricultural Experiment Station Hatch Project-LAB94152, Louisiana State University, Baton Rouge, LA, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jim J. Wang or Dong-Cheol Seo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JH., Wang, J.J., Kim, SH. et al. Lead sorption characteristics of various chicken bone part-derived chars. Environ Geochem Health 41, 1675–1685 (2019). https://doi.org/10.1007/s10653-017-0067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-0067-7

Keywords

Navigation