Abstract
We address the iterative solution of KKT systems arising in the solution of convex quadratic programming problems. Two strictly related and well established formulations for such systems are studied with particular emphasis on the effect of preconditioning strategies on their relation. Constraint and augmented preconditioners are considered, and the choice of the augmentation matrix is discussed. A theoretical and experimental analysis is conducted to assess which of the two formulations should be preferred for solving large-scale problems.
Similar content being viewed by others
Notes
Throughout we use the hat symbol, \(\,\widehat{\,}\,\), for matrices corresponding to the nonsymmetric \(3\times 3\) formulation.
References
Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Methods Softw. 11, 275–302 (1999)
Axelsson, O.: Preconditioners for regularized saddle point matrices. J. Numer. Math. 19(2), 91–112 (2011)
Baryamureeba, V., Steihaug, T.: On the convergence of an inexact primal-dual interior point method for linear programming. In: Lirkov, I., Margenov, S., Wasniewski, J. (eds.) Proceedings of the 5th International Conference on Large-Scale Scientific Computing. Lecture Notes in Computer Science, vol. 3743, pp. 629–637. Springer, Berlin (2006)
Bellavia, S.: An inexact interior point method. J. Optim. Theory Appl. 96, 109–121 (1998)
Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)
Benzi, M., Olshanskii, M.A.: An augmented Lagrangian-based approach to the Oseen problem. SIAM J. Sci. Comput. 28, 2095–2113 (2006)
Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28, 149–171 (2004)
Cafieri, S., D’Apuzzo, M., De Simone, V., di Serafino, D.: Stopping criteria for inner iterations in inexact potential reduction methods: a computational study. Comput. Optim. Appl. 36, 165–193 (2007)
Cao, Zhi-Hao: Augmentation block preconditioners for saddle point-type matrices with singular (1, 1) blocks. Numer. Linear Algebra Appl. 15, 515–533 (2008)
Castro, J., Cuesta, J.: Quadratic regularizations in an interior-point method for primal block-angular problems. Math. Program. 130, 415–445 (2011)
D’Apuzzo, M., De Simone, V., di Serafino, D.: On mutual impact of linear algebra and large-scale optimization with focus on interior point methods. Comput. Optim. Appl. 45, 283–310 (2010)
Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)
Dollar, H.S.: Constraint-style preconditioners for regularized saddle-point systems. SIAM J. Matrix Anal. Appl. 29, 672–684 (2007)
Dollar, H.S., Gould, N.I.M., Schilders, W.H.A., Wathen, A.J.: Implicit-factorization preconditioning and iterative solvers for regularized saddle-point systems. SIAM J. Matrix Anal. Appl. 28, 170–189 (2006)
Dollar, H.S., Gould, N.I.M., Schilders, W.H.A., Wathen, A.J.: Using constraint preconditioners with regularized saddle-point problems. Comput. Optim. Appl. 36, 249–270 (2007)
Durazzi, C., Ruggiero, V.: Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems. Numer. Linear Algebra Appl. 10, 673–688 (2003)
Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers. Oxford University Press, Oxford (2005)
Forsgren, A.: Inertia-controlling factorizations for optimization algorithms. Appl. Numer. Math. 43, 91–107 (2002)
Forsgren, A., Gill, P.E., Griffin, J.D.: Iterative solution of augmented systems arising in interior methods. SIAM J. Optim. 18, 666–690 (2007)
Forsgren, A., Gill, P.E., Shinnerl, J.R.: Stability of symmetric ill-conditioned systems arising in interior methods for constrained optimization. SIAM J. Optim. 17, 187–211 (1996)
Friedlander, M.P., Orban, D.: A primal-dual regularization interior-point method for convex quadratic programs. Math. Program. Comput. 4, 71–107 (2012)
Gondzio, J.: Convergence analysis of an inexact feasible interior point method for convex quadratic programming. SIAM J. Optim. 23, 1510–1527 (2013)
Gould, N.I.M., Orban, D., Toint, PhL: Cuter (and sifdec), a contrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29, 373–394 (2003)
Gould, N.I.M., Simoncini, V.: Spectral analysis of saddle point matrices with indefinite leading blocks. SIAM J. Matrix Anal. Appl. 31, 1152–1171 (2009)
Greif, C., Moulding, E., Orban, D.: Bounds on eigenvalues of matrices arising from interior-point methods. SIAM J. Optim. 24, 49–83 (2014)
Greif, C., Schötzau, D.: Preconditioners for saddle point linear systems with highly singular (1, 1) blocks. Electron. Trans. Numer. Anal. 22, 114–121 (2006)
Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia, PA (2008)
Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21, 1300–1317 (2000)
Lukšan, L., Vlček, J.: Indefinitely preconditioned inexact Newton method for large sparse equality constrained nonlinear programming problems. Numer. Linear Algebra Appl. 5, 219–247 (1998)
Maros, I., Meszaros, C.: A repository of convex quadratic programming problems. Optim. Methods Softw. 11&12, 671–681 (1999)
Morini, B., Simoncini, V., Tani, M.: Spectral estimates for unreduced symmetric KKT systems arising from interior point methods. Numer. Linear Algebra Appl. 23, 776–800 (2016)
Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)
PDCO: Primal-Dual interior method for Convex Objectives. http://stanford.edu/group/software/pdco
Rees, T., Greif, C.: A preconditioner for linear systems arising from interior point optimization methods. SIAM J. Sci. Comput. 29, 1992–2007 (2007)
Rozložník, M., Simoncini, V.: Krylov subspace methods for saddle point problem with indefinite preconditioning. SIAM J. Matrix Anal. Appl. 24(2), 368–391 (2002)
Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)
Saunders, M.A.: Cholesky-based methods for sparse least-squares: the benefit of regularization. In: Adams, L., Nazareth, J.L. (eds.) Linear and Nonlinear Conjugate Gradient-Related Methods, pp. 92–100. SIAM, Philadelphia (1994)
Shen, S.Q., Huang, T.Z., Zhang, J.S.: Augmentation block triangular preconditioners for regularized saddle point problems. SIAM J. Matrix Anal. Appl. 33, 721–741 (2012)
Wright, S.J.: Stability of linear equations solvers in interior-point methods. SIAM J. Matrix Anal. Appl. 16, 1287–1307 (1995)
Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)
Acknowledgements
We wish to thank Michael Saunders for his many comments and suggestions on an earlier draft of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Work partially supported by INdAM-GNCS under the 2015 Project Metodi di regolarizzazione per problemi di ottimizzazione e applicazioni.
Rights and permissions
About this article
Cite this article
Morini, B., Simoncini, V. & Tani, M. A comparison of reduced and unreduced KKT systems arising from interior point methods. Comput Optim Appl 68, 1–27 (2017). https://doi.org/10.1007/s10589-017-9907-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-017-9907-8