[go: up one dir, main page]

Skip to main content

Advertisement

Log in

A decentralized lightweight blockchain-based authentication mechanism for IoT systems

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) is an emerging paradigm branded by heterogeneous technologies composed of smart ubiquitous objects that are seamlessly connected to the Internet. These objects are often deployed in open environments to provide innovative services in various application domains such as smart cities, smart health, and smart communities. These IoT devices produce a massive amount of confidentiality and security-sensitive data. Thus, security of these devices is very important in order to ensure the safety and effectiveness of the system. In this paper, a decentralized authentication and access control mechanism is proposed for lightweight IoT devices and is applicable to a large number of scenarios. The mechanism is based on the technology of the fog computing and the concept of the public blockchain. The results gained from the experiments demonstrate a superior performance of the proposed mechanism when compared to a state-of-the-art blockchain-based authentication technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baker, T., Asim, M., Tawfik, H., Aldawsari, B., Buyya, R.: An energy-aware service composition algorithm for multiple cloud-based IoT applications. J. Netw. Comput. Appl. 89, 96–108 (2017)

    Article  Google Scholar 

  2. Abbas, N., Asim, M., Tariq, N., Baker, T., Abbas, S.: A mechanism for securing IoT-enabled applications at the fog layer. J. Sens. Actuator Netw. 8, 16 (2019)

    Article  Google Scholar 

  3. Hammi, B., Khatoun, R., Zeadally, S., Fayad, A., Khoukhi, L.: IoT technologies for smart cities. IET Netw. 7, 1–13 (2017)

    Google Scholar 

  4. By, Gartner Says, 2020, More Than Half of Major New Business Processes and Systems Will Incorporate Some Element of the Internet of Things. Publicado em Janeiro (2016)

  5. Alkheir, A.A., Aloqaily, M., Mouftah, H.T.: Connected and autonomous electric vehicles (caevs). IT Prof. 20, 54–61 (2018)

    Article  Google Scholar 

  6. Ahmad, A., Din, S., Paul, A., Jeon, G., Aloqaily, M., Ahmad, M.: Real-time route planning and data dissemination for urban scenarios using the Internet of Things. IEEE Wirel. Commun. 26, 50–55 (2019)

    Article  Google Scholar 

  7. Lee, I., Lee, K.: The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58, 431–440 (2015)

    Article  Google Scholar 

  8. Tonyali, S., Akkaya, K., Saputro, N., Uluagac, A.S., Nojoumian, M.: Privacy-preserving protocols for secure and reliable data aggregation in IoT-enabled smart metering systems. Future Gener. Comput. Syst. 78, 547–557 (2018)

    Article  Google Scholar 

  9. Nawir, M., Amir, A., Yaakob, N., Lynn, O.B.: Internet of Things (IoT): taxonomy of security attacks. In: 2016 3rd International Conference on Electronic Design (ICED), pp. 321–326 (2016)

  10. Liu, B., Yu, X.L., Chen, S., Xu, X., Zhu, L.: Blockchain based data integrity service framework for IoT data, Liming. In: 2017 IEEE International Conference on Web Services (ICWS), pp. 468–475 (2017)

  11. Anirudh, M., Thileeban, S.A., Nallathambi, D.J.: Use of honeypots for mitigating DoS attacks targeted on IoT networks. In: 2017 International Conference on Computer, Communication and Signal Processing (ICCCSP), pp. 1–4 (2017)

  12. Li, F., Xiong, P.: Practical secure communication for integrating wireless sensor networks into the internet of things. IEEE Sens. J. 13, 3677–3684 (2013)

    Article  Google Scholar 

  13. Muhammad, K., Hamza, R., Ahmad, J., Lloret, J., Wang, H., Baik, S.W.: Secure surveillance framework for IoT systems using probabilistic image encryption. IEEE Trans. Ind. Inform. 14, 3679–3689 (2018)

    Article  Google Scholar 

  14. Hammi, M.T., Hammi, B., Bellot, P., Serhrouchni, A.: Bubbles of trust: a decentralized blockchain-based authentication system for IoT. Comput. Secur. 78, 126–142 (2018)

    Article  Google Scholar 

  15. Won, J., Seo, S.-H., Bertino, E.: A secure communication protocol for drones and smart objects. In: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, pp. 249–260 (2015)

  16. Aloqaily, M., Al Ridhawi, I., Salameh, H.B., Jararweh, Y.: Data and service management in densely crowded environments: challenges, opportunities, and recent developments. IEEE Commun. Mag. 57, 81–87 (2019)

    Article  Google Scholar 

  17. Baker, T., Asim, M., MacDermott, A., Iqbal, F., Kamoun, F., Shah, B., Alfandi, O., Hammoudeh, M.: A secure fog-based platform for SCADA-based IoT critical infrastructure. Software: Practice and Experience (2019)

  18. Rathee, G., Sharma, A., Iqbal, R., Aloqaily, M., Jaglan, N., Kumar, R.: A blockchain framework for securing connected and autonomous vehicles. Sensors 14, 3165 (2019)

    Article  Google Scholar 

  19. Al Ridhawi, I., Aloqaily, M., Kotb, Y., Jararweh, Y., Baker, T.: A profitable and energy-efficient cooperative fog solution for IoT services. IEEE Trans. Ind. Inform. (2019)

  20. Tariq, N., Asim, M., Al-Obeidat, F., Zubair Farooqi, M., Baker, T., Hammoudeh, M., Ghafir, I.: The security of big data in fog-enabled IoT applications including blockchain: a survey. Sensors 19, 1788 (2019)

    Article  Google Scholar 

  21. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and privacy in distributed internet of things. Comput. Netw. 57, 2266–2279 (2013)

    Article  Google Scholar 

  22. Mahmoud, R., Yousuf, T., Aloul, F., Zualkernan, I.: Internet of things (IoT) security: current status, challenges and prospective measures. In: 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 336–341 (2015)

  23. Aman, M.N., Chua, K.C., Sikdar, B.: Mutual authentication in IoT systems using physical unclonable functions. IEEE Internet Things J. 4, 1327–1340 (2017)

    Article  Google Scholar 

  24. Kothmayr, T., Schmitt, C., Hu, W., Brunig, M., Carle, G.: A DTLS based end-to-end security architecture for the Internet of Things with two-way authentication. In: 37th Annual IEEE Conference on Local Computer Networks-Workshops, pp. 956–963 (2012)

  25. Jan, M.A., Nanda, P., He, X., Tan, Z., Liu, R.P.: A robust authentication scheme for observing resources in the internet of things environment. In: 2014 IEEE 13th International Conference on Trust. Security and Privacy in Computing and Communications, pp. 205–211 (2014)

  26. Lau, C.H., Alan, K.-H.Y., Yan, F.: Blockchain-Based Authentication in IoT Networks. In: 2018 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8 (2018)

  27. Li, D., Peng, W., Deng, W., Gai, F.: A Blockchain-Based Authentication and Security Mechanism for IoT. In: 2018 27th International Conference on Computer Communication and Networks (ICCCN), pp. 1–6 (2018)

  28. Kshetri, N.: Blockchain’s roles in strengthening cybersecurity and protecting privacy. Telecommun. Policy 41, 1027–1038 (2017)

    Article  Google Scholar 

  29. Kumar, G., Saha, R., Rai, M.K., Thomas, R., Kim, T.-H.: Proof-of-work consensus approach in blockchain technology for cloud and fog computing using maximization-factorization statistics. IEEE Internet Things J. 6, 6835–6842 (2019)

    Article  Google Scholar 

  30. Kang, J., Xiong, Z., Niyato, D., Wang, P., Ye, D., Kim, D.I.: Incentivizing consensus propagation in proof-of-stake based consortium blockchain networks. IEEE Wirel. Commun. Lett. 8, 157–160 (2018)

    Article  Google Scholar 

  31. Sousa, J., Bessani, A., Vukolic, M.: A byzantine fault-tolerant ordering service for the hyperledger fabric blockchain platform. In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 51–58 (2018)

  32. Schwartz, D., Youngs, N., Britto, A., et al.: The ripple protocol consensus algorithm, Ripple Labs Inc White Paper 5, 8 (2014)

  33. Baliga, A.: Understanding blockchain consensus models. Persistent 4, 1–14 (2017)

    Google Scholar 

  34. Jayasinghe, U., Lee, G.M., MacDermott, A., Rhee, W.S.: TrustChain: a privacy preserving blockchain with edge computing. Wirel. Commun. Mobile Comput. 2019, 17 (2019)

    Article  Google Scholar 

  35. Wu, F., Li, X., Xu, L., Kumari, S., Karuppiah, M., Shen, J.: A lightweight and privacy-preserving mutual authentication scheme for wearable devices assisted by cloud server. Comput. Electr. Eng. 63, 168–181 (2017)

    Article  Google Scholar 

  36. Zhang, J., Wang, Z., Yang, Z., Zhang, Q.: Proximity based IoT device authentication. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pp. 1–9 (2017)

  37. Vijayakumar, P., Chang, V., Deborah, L.J., Balusamy, B., Shynu, P.G.: Computationally efficient privacy preserving anonymous mutual and batch authentication schemes for vehicular ad hoc networks. Future Gener. Comput. Syst. 78, 943–955 (2018)

    Article  Google Scholar 

  38. Gope, P., Sikdar, B.: Lightweight and privacy-preserving two-factor authentication scheme for IoT devices. IEEE Internet of Things J. 6, 580–589 (2019)

    Article  Google Scholar 

  39. Feng, W., Qin, Y., Zhao, S., Feng, D.: AAoT: lightweight attestation and authentication of low-resource things in IoT and CPS. Comput. Netw. 134, 167–182 (2018)

    Article  Google Scholar 

  40. Esfahani, A., Mantas, G., Matischek, R., Saghezchi, F.B., Rodriguez, J., Bicaku, A., Maksuti, S., Tauber, M., Schmittner, C., Bastos, J.: A lightweight authentication mechanism for M2M communications in industrial iot environment. IEEE Internet Things J. 6, 288–296 (2017)

    Article  Google Scholar 

  41. Gong, B., Zhang, Y., Wang, Y.: A remote attestation mechanism for the sensing layer nodes of the Internet of Things. Future Gen. Comput. Syst. 78, 867–886 (2018)

    Article  Google Scholar 

  42. Roychoudhury, P., Roychoudhury, B., Saikia, D.K.: Provably secure group authentication and key agreement for machine type communication using Chebyshev’s polynomial. Comput. Commun. 127, 146–157 (2018)

    Article  Google Scholar 

  43. Zhang, X., Yang, L.T., Liu, C., Chen, J.: A scalable two-phase top-down specialization approach for data anonymization using mapreduce on cloud. IEEE Trans. Parallel Distrib. Syst. 25, 363–373 (2013)

    Article  Google Scholar 

  44. Raptis, T., Passarella, A., Conti, M.: Performance analysis of latency-aware data management in industrial IoT networks. Sensors 18, 2611 (2018)

    Article  Google Scholar 

  45. Goyal, T.K., Sahula, V.: Lightweight security algorithm for low power IoT devices. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1725–1729 (2016)

  46. Dexin, X.U., Zhenfan, T.A.N., Yanbin, G.A.O.: Developing application and realizing multiplatform based on Qt framework. J. Northeast Agric. Univ. 3, 018 (2006)

    Google Scholar 

  47. Matt Broadstone, QJSON RPC, Bitbucket. https://bitbucket.org/devonit/qjsonrpc/src/master/. Accessed 08 Sept 2019

  48. Fotiou, N., Polyzos, G.C.: Decentralized name-based security for content distribution using blockchains. In: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 415–420 (2016)

  49. Barua, M., Liang, X., Lu, R., Shen, X.: ESPAC: Enabling Security and Patient-centric Access Control for eHealth in cloud computing. Int. J. Secur. Netw. 6, 67–76 (2011)

    Article  Google Scholar 

  50. Reddy, A.G., Suresh, D., Phaneendra, K., Shin, J.S., Odelu, V.: Provably secure pseudo-identity based device authentication for smart cities environment. Sustain. Cities Soc. 41, 878–885 (2018)

    Article  Google Scholar 

  51. Sultan, A., Mushtaq, M.A., Abubakar, M.: IOT security issues via blockchain: a review paper. In: Proceedings of the 2019 International Conference on Blockchain Technology, pp. 60–65 (2019)

  52. Lee, K.C., Lee, H.-H.: Network-based fire-detection system via controller area network for smart home automation. IEEE Trans. Consum. Electron. 50, 1093–1100 (2004)

    Article  Google Scholar 

  53. Al-Turjman, F., Altrjman, C.: IoT smart homes and security issues: an overview. Security in IoT-Enabled Spaces, pp. 111–137 (2019)

  54. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., Sikdar, B.: A survey on IoT security: application areas, security threats, and solution architectures. IEEE Access 7, 82721–82743 (2019)

    Article  Google Scholar 

  55. Wu, M., Wang, K., Cai, X., Guo, S., Guo, M., Rong, C.: A comprehensive survey of blockchain: from theory to IoT applications and beyond. IEEE Internet Things J. 6, 8114–8154 (2019)

    Article  Google Scholar 

  56. Lohachab, A., et al.: ECC based inter-device authentication and authorization scheme using MQTT for IoT networks. J. Inf. Secur. Appl. 46, 1–12 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, U., Asim, M., Baker, T. et al. A decentralized lightweight blockchain-based authentication mechanism for IoT systems. Cluster Comput 23, 2067–2087 (2020). https://doi.org/10.1007/s10586-020-03058-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03058-6

Keywords

Navigation