Abstract
Based on a Ricardian analysis accounting for spatial autocorrelation and relying on recent climate change forecasts at a low spatial scale, this study assesses the impact of climate change on German agriculture. Given the limited availability of data (e.g., the unknown average soil quality at the district level), a spatial error model is used in order to obtain unbiased marginal effects. The Ricardian analysis is performed using data from the 1999 agricultural census along with data from the network of German weather observation stations. The cross-sectional analysis yields an increase of land rent along with both a rising mean temperature and a declining spring precipitation, except for in the Eastern part of the country. The subsequent simulation of local land rent changes under three different IPCC scenarios is done by entering into the estimated regression equations spatially processed data averages for the period between 2011 and 2040 from the regional climate model REMO. The resulting expected benefits arising from climate change are represented in maps containing the 439 German districts; the calculated overall rent increase corresponds to approximately 5–6% of net German agricultural income. However, in the long run, when temperature and precipitation changes will be more severe than those simulated for 2011–2040, income losses for German agriculture cannot be excluded.
Similar content being viewed by others
References
Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht
BMVEL (Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft) (2001) Agrarbericht der Bundesregierung 2001. Bonn, Germany
BMVEL (Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft) (2004) Ernährungs- und agrarpolitischer Bericht der Bundesregierung 2004. Berlin, Germany
Deschênes O, Greenstone M (2007) The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather. Am Econ Rev 97(1):354–385
DWD (Deutscher Wetterdienst) (2007) Mittelwerte aller DWD Stationen der Periode 1961–1990. www.dwd.de/de/FundE/Klima/KLIS/daten/online/nat/index_mittelwerte.htm. Accessed 31 July 2007
EC (2003) Regulation (EC) No 1059/2003 of the European Parliament and of the Council of 26 May 2003 on the establishment of a common classification of territorial units for statistics (NUTS). Official Journal of the European Union, L 154/1, 21st June 2003
Gerstengarbe F-W, Werner PC, Österle H, Wodinski M (2005) Klimatische Belastungen und Extreme. In: Stock M (ed) KLARA, Klimawandel—Auswirkungen, Risiken, Anpassung. PIK Report 99, pp 21–45
IPCC (Intergovernmental Panel on Climate Change) (2007a) Fourth assessment report—climate change. WG I and WG II, Geneva. www.ipcc.ch. Accessed 10 Dec 2007
IPCC (Intergovernmental Panel on Climate Change) (2007b) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel of climate change. Cambridge University Press, Cambridge
Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73
Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63:119–129
Kolstad CD (2000) Environmental economics. Oxford University Press, New York
Lang G (2007) Where are Germany’s gains from Kyoto? Estimating the effects of global warming on agriculture. Clim Change 84:423–439
LeSage J (1999) Spatial econometrics. Department of Economics, University of Toledo (USA). www.rri.wvu.edu/WebBook/LeSage/spatial/spatial.html. Accessed 4 Feb 2003
LeSage J (2003) Econometrics toolbox. www.spatial-econometrics.com. Accessed Feb 2003
Mendelsohn R (2007) Measuring climate impacts with cross-sectional analysis. Introduction to the special issue in climatic change. Clim Change 81:1–7
Mendelsohn R, Reinsborough M (2007) A Ricardian analysis of US and Canadian farmland. Clim Change 81:9–17
Mendelsohn R, Nordhaus WD, Shaw D (1994) The impact of global warming on agriculture: a Ricardian analysis. Am Econ Rev 84(4):753–771
MPI on behalf of the Umweltbundesamt (2006) REMO-UBA scenario data. CERA-database (Climate and Environmental Data Retrieval and Archive), WDCC (World Data Center for Climate). Modelle & Daten. http://cera-www.dkrz.de. Accessed 27 Nov 2007
Patton M, McErlean S (2003) Spatial effects within the agricultural land market in Northern Ireland. J Agric Econ 54(1):35–54
Polsky C, Easterling WE III (2001) Adaptation to climate variability and change in the US Great Plains: a multi-scale analysis of Ricardian climate sensitivities. Agric Ecosyst Environ 85:133–144
Schlenker W, Roberts M (2006) Nonlinear effects of weather on corn yields. Rev Agric Econ 28(3):391–398
Schlenker W, Hanemann WM, Fisher AC (2005) Will U.S. agriculture really benefit from global warming? Accounting for irrigation in the Hedonic approach. Am Econ Rev 95(1):395–406
Schlenker W, Hanemann WM, Fisher AC (2006) The impact of global warming on U.S. agriculture: an econometric analysis of optimal growing conditions. Rev Econ Stat 88(1):113–125
Schlenker W, Hanemann WM, Fisher AC (2007) Water availability, degree days, and the potential impact of climate change on irrigated agriculture in California. Clim Change 81:19–38
Schulzweida U, Kornblueh L, Quast R (2007) CDO User’s Guide. www.mpimet.mpg.de/fileadmin/software/cdo. Accessed 27 Nov 2007
Spekat A, Enke W, Kreienkamp F (2007) Neuentwicklung von regional hoch aufgelösten Wetterlagen für Deutschland und Bereitstellung regionaler Klimaszenarios auf der Basis von globalen Klimasimulationen mit ECHAM5/MPI-OM T63L31 2010 bis 2100 für die SRES-Szenarios B1, A1B und A2. Endbericht im Rahmen des Forschungs- und Entwicklungsvorhabens: “Klimaauswirkungen und Anpassungen in Deutschland - Phase I: Erstellung regionaler Klimaszenarios für Deutschland” des Umweltbundesamtes. www.umweltbundesamt.de. Accessed Jan 2007
Statistische Ämter des Bundes und der Länder (2001) Statistik regional. Daten und Informationen. CD ROM
Statistisches Landesamt Baden-Württemberg (2007) Communication of the 1999 land rental prices in German districts, collected by the statistical offices of Germany. Stuttgart, August 2007
UBA (Umweltbundesamt) (2006) Künftige Klimaänderungen in Deutschland - Regionale Projektionen für das 21. Jahrhundert. Hintergrundpapier, April 2006, updated in September 2006. www.umweltbundesamt.de
von Braun J (2007) The world food situation: new driving forces and required actions. IFPRI’s biannual overview of the world food situation presented to the CGIAR Annual General Meeting, Beijing, December 4, 2007. International Food Policy Research Institute (IFPRI), Washington
Zebisch M, Grothman T, Schröter D, Hasse C, Fritsch U, Cramer W (2005) Climate change in Germany, vulnerability and adaptation of climate sensitive sectors. Environmental research of the federal ministry of the environment, nature conservation and nuclear safety, research report 201 41 253, UBA-FB 000844/e. www.umweltbundesamt.de
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lippert, C., Krimly, T. & Aurbacher, J. A Ricardian analysis of the impact of climate change on agriculture in Germany. Climatic Change 97, 593–610 (2009). https://doi.org/10.1007/s10584-009-9652-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10584-009-9652-9