[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Modes of Hypotensive Action of Dihydroquercetin in Arterial Hypertension

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effect of dihydroquercetin (20 mg/kg/day intragastrically for 6 weeks) on mean BP and macro- and microrheological blood parameters in hypertensive SHR rats; in vitro effect of dihydroquercetin on the tone in thoracic aorta rings isolated from hypertensive SHR rats were also examined. At the end of the treatment course, the mean BP in the experimental rats decreased by 11%; the left ventricular mass index by 2%, and whole blood viscosity by 7-10% in comparison with control SHR rats; erythrocyte aggregation half-time increased by 15%; plasma viscosity, hematocrit, and erythrocyte deformability did not change. In in vitro experiments, dihydroquercetin (10—8-10—6M) induced relaxation of the isolated thoracic aorta rings in a dose-dependent manner. Hence, the antihypertensive effect of dihydroquercetin results from the decrease in blood viscosity and vasodilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Britov AN, Aparina TV. The role of “Kapilar” (dihydroquercetin) in correction of hemodynamic and metabolic disturbances in patients with atherosclerosis and hypertension. Regionar. Krovoobr. Mikrotsirk. 2006;5(2):46-53. Russian.

    Google Scholar 

  2. Zherdev VP, Kolyvanov GB, Litvin AA, Sariev AK, Viglinskaya AO, Gekkiev BI, Grigor’ev AM, Gorlov VV. Comparative pharmacokinetics of dihydroquercetin in rats upon peroral administration of parent substance and flamen D liposomal formulation. Eksper. Klin. Farmakol. 2010;73(1):23-25. Russian.

    CAS  Google Scholar 

  3. Zhuravlyov DA. Hypertension models. Spontaneously hypertensive rats. Arterial. Gipertenz. 2009;15(6):722-723. Russian.

    Google Scholar 

  4. Kubatiev AA, Yadigarova ZT, Rud’ko IA, Bykov VA, Tyukavkina NA. Effect of diquertin on platelet content of cyclic nucleotides Bull. Exp. Biol. Med. 1999;128(3):890-891.

    Article  CAS  Google Scholar 

  5. Plotnikov MB, Tyukavkina NA, Plotnikova TM. Diquertinbased drugs. Tomsk, 2005. Russian.

    Google Scholar 

  6. Prevention, diagnosis, and therapy of arterial hypertension. Kardiovask. Ter. Prof. 2004;3(4 S1):3-19 Russian.

  7. Ajmani R.S. Hypertension and hemorheology. Clin. Hemorheol. Microcirc. 1997;17(6):397-420.

    CAS  PubMed  Google Scholar 

  8. Baskurt OK, Yalcin O, Meiselman HJ. Hemorheology and vascular control mechanisms. Clin. Hemorheol. Microcirc. 2004;30(3-4):169-178.

    PubMed  Google Scholar 

  9. Bruschi G, Minari M, Bruschi M.E, Tacinelli L, Milani B, Cavatorta A, Borghetti A. Similarities of essential and spontaneous hypertension. Volume and number of blood cells. Hypertension. 1986;8(11):983-989.

    Article  CAS  PubMed  Google Scholar 

  10. Dornas WC, Silva ME. Animal models for the study of arterial hypertension. J. Biosci. 2011;36(4):731-737.

    Article  PubMed  Google Scholar 

  11. Pechánová O. Contribution of captopril thiol group to the prevention of spontaneous hypertension. Physiol Res. 2007;56(Suppl. 2):S41-S48.

    PubMed  Google Scholar 

  12. Plotnikov MB, Aliev OI, Maslov MJ, Vasiliev AS, Tjukavkina NA. Correction of the high blood viscosity syndrome by a mixture of Diquertin and Ascorbic Acid in vitro and in vivo. Phytother. Res. 2003;17(3):276-278.

    Article  CAS  PubMed  Google Scholar 

  13. Pozharitskaya ON, Karlina MV, Shikov AN, Kosman VM, Makarova MN, Makarov VG. Determination and pharmacokinetic study of taxifolin in rabbit plasma by high-performance liquid chromatography. Phytomedicine. 2009;16(2-3):244-251.

    Article  CAS  PubMed  Google Scholar 

  14. Shin S, Hou JX, Suh JS, Singh M. Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability. Clin. Hemorheol. Microcirc. 2007;37(4):319-328.

    CAS  PubMed  Google Scholar 

  15. Sloop G, Holsworth RE Jr, Weidman JJ, St Cyr JA. The role of chronic hyperviscosity in vascular disease. Ther. Adv. Cardiovasc. Dis. 2015;9(1):19-25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Plotnikov.

Additional information

Translated from ByulletenEksperimentalnoi Biologii i Meditsiny, Vol. 162, No. 9, pp. 338-341, September, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotnikov, M.B., Aliev, O.I., Sidekhmenova, A.V. et al. Modes of Hypotensive Action of Dihydroquercetin in Arterial Hypertension. Bull Exp Biol Med 162, 353–356 (2017). https://doi.org/10.1007/s10517-017-3614-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3614-4

Key Words

Navigation