Abstract
This paper develops and tests a plane based simultaneous localization and mapping algorithm capable of processing the uneven sampling density of Velodyne-style scanning LiDAR sensors in real-time. The algorithm uses an efficient plane detector to rapidly provide stable features, both for localization and as landmarks in a graph-based SLAM. When planes cannot be detected or when they provide insufficient support for localization, a novel constraint tracking algorithm selects a minimal set of supplemental point features to be provided to the localization solver. Several difficult indoor and outdoor datasets, totaling 6981 scans, each with \(\sim \) 70,000 points, are used to analyze the performance of the algorithm without the aid of any additional sensors. The results are compared to two competing state-of-the-art algorithms, GICP and LOAM, showing up to an order of magnitude faster runtime and superior accuracy on all datasets, with loop closure errors of 0.14–0.95 m, compared to 0.44–66.11 m.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agarwal, S., Mierle, K., & et al. (2016). Ceres solver. http://ceres-solver.org.
Ainscough, T., Zanetti, R., Christian, J., & Spanos, P. D. (2014). Q-method extended kalman filter. Journal of Guidance, Control, and Dynamics, 38(4), 752–760.
Badino, H., Huber, D., Park, Y., & Kanade, T. (2011). Fast and accurate computation of surface normals from range images. In: 2011 IEEE international conference on robotics and automation (ICRA) (pp. 3084–3091). IEEE.
Behringer, R., Travis, W., Daily, R., Bevly, D., Kubinger, W., Herzner, W., et al. (2005). Rascal-an autonomous ground vehicle for desert driving in the darpa grand challenge 2005. In: Intelligent Transportation Systems, 2005. Proceedings (pp. 644–649). IEEE.
Blanco, J. L., & Rai, P. K. (2014). nanoflann: A C++ header-only fork of FLANN, a library for nearest neighbor (NN) wih kd-trees. https://github.com/jlblancoc/nanoflann.
Borrmann, D., Elseberg, J., Lingemann, K., & Nüchter, A. (2011). The 3d hough transform for plane detection in point clouds: A review and a new accumulator design. 3D Research, 2(2), 1–13.
Ceriani, S., Sanchez, C., Taddei, P., Wolfart, E., & Sequeira, V. (2015). Pose interpolation slam for large maps using moving 3d sensors. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 750–757). https://doi.org/10.1109/IROS.2015.7353456
Choi, J., Lee, J., Kim, D., Soprani, G., Cerri, P., Broggi, A., et al. (2012). Environment-detection-and-mapping algorithm for autonomous driving in rural or off-road environment. IEEE Transactions on Intelligent Transportation Systems, 13(2), 974–982.
Davenport, P. B. (1968). A vector approach to the algebra of rotations with applications. National Aeronautics and Space Administration
Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., & Burgard, W. (2012). An evaluation of the rgb-d slam system. In: 2012 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1691–1696). IEEE.
Fitzgibbon, A. W. (2003). Robust registration of 2d and 3d point sets. Image and Vision Computing, 21(13), 1145–1153.
Grant, W. S., Voorhies, R. C., & Itti, L. (2013). Finding planes in lidar point clouds for real-time registration. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4347–4354). IEEE.
Grant, W. S., Voorhies, R. C., & Itti, L. (2016). Ic3po data and source code. ilab.usc.edu/ic3po/. Accessed 3 February 2016.
Grisetti, G., Stachniss, C., & Burgard, W. (2005). Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling. In: Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005 (pp. 2432–2437). IEEE.
Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 34–46.
Hahnel, D., Burgard, W., Fox, D., & Thrun, S. (2003) An efficient fastslam algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. In: 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings (Vol. 1, pp. 206–211). IEEE.
Henry, P., Krainin, M., Herbst, E., Ren, X., & Fox, D. (2012). Rgb-d mapping: Using kinect-style depth cameras for dense 3d modeling of indoor environments. The International Journal of Robotics Research, 31(5), 647–663.
Horn, B. K. (1987). Closed-form solution of absolute orientation using unit quaternions. JOSA A, 4(4), 629–642.
Itti, L., Voorhies, R. C., Grant, W. S., Parks, D., & Berg, D. (2016). Neuromorphic robotics toolkit. nrtkit.org . Accessed 3 February 2016
Kaess, M. (2015). Simultaneous localization and mapping with infinite planes. In: 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4605–4611). IEEE.
Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., & Dellaert, F. (2011). isam2: Incremental smoothing and mapping using the bayes tree. The International Journal of Robotics Research, 0278364911430419.
Markley, F. L., & Mortari, D. (2000). Quaternion attitude estimation using vector observations. Journal of the Astronautical Sciences, 48(2), 359–380.
Moosmann, F., & Stiller, C. (2011). Velodyne slam. In: 2011 IEEE Intelligent Vehicles Symposium (IV) (pp. 393–398). IEEE.
Newcombe, R. A., Davison, A. J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., et al. (2011). Kinectfusion: Real-time dense surface mapping and tracking. In: 2011 10th IEEE international symposium on Mixed and augmented reality (ISMAR) (pp. 127–136). IEEE.
Pathak, K., Birk, A., Vaskevicius, N., Pfingsthorn, M., Schwertfeger, S., & Poppinga, J. (2010a). Online three-dimensional slam by registration of large planar surface segments and closed-form pose-graph relaxation. Journal of Field Robotics, 27(1), 52–84.
Pathak, K., Birk, A., Vaskevicius, N., & Poppinga, J. (2010b). Fast registration based on noisy planes with unknown correspondences for 3-d mapping. IEEE Transactions on Robotics, 26(3), 424–441.
Salas-Moreno, R. F., Glocken, B., Kelly, P. H., & Davison, A. J. (2014). Dense planar slam. In: 2014 IEEE international symposium on mixed and augmented reality (ISMAR) (pp. 157–164). IEEE.
Segal, A., Haehnel, D., & Thrun, S. (2009). Generalized-icp. In: Robotics: Science and Systems, Vol. 2.
Shuster, M. D. (2006). The generalized Wahba problem. The Journal of the Astronautical Sciences, 54(2), 245–259.
Shuster, M. D., & Oh, S. (2012). Three-axis attitude determination from vector observations. Journal of Guidance, Control, and Dynamics.
Trevor, A. J., Rogers, J. G., & Christensen, H. I. (2014). Omnimapper: A modular multimodal mapping framework. In: 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1983–1990). IEEE.
Umeyama, S. (1991). Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4), 376–380.
Urmson, C., Bagnell, J. A., Baker, C. R., Hebert, M., Kelly, A., Rajkumar, R., et al. (2007). Tartan racing: A multi-modal approach to the darpa urban challenge.
Weingarten, J., & Siegwart, R. (2005). Ekf-based 3d slam for structured environment reconstruction. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005 (IROS 2005) (pp. 3834–3839). IEEE.
Weingarten, J., & Siegwart, R. (2016) 3d slam using planar segments. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3062–3067). IEEE.
Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., & McDonald, J. (2012). Kintinuous: Spatially extended kinectfusion. CSAIL Technical Reports
Wright, S., & Nocedal, J. (1999). Numerical optimization (Vol. 2). New York: Springer.
Zhang, J., & Singh, S. (2014a). LOAM: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems Conference (RSS). Berkeley, CA.
Zhang, J., & Singh, S. (2014b). Loam velodyne: A realtime method for state estimation and mapping using a 3d lidar. https://github.com/laboshinl/loam_velodyne.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by the National Science Foundation (Grant Numbers CCF-1317433 and CNS-1545089), C-BRIC (one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA), the Army Research Office (W911NF-12-1-0433), the Office of Naval Research (N00014-13-1-0563), and the Intel Corporation. The authors affirm that the views expressed herein are solely their own, and do not represent the views of the United States government or any agency thereof.
Rights and permissions
About this article
Cite this article
Grant, W.S., Voorhies, R.C. & Itti, L. Efficient Velodyne SLAM with point and plane features. Auton Robot 43, 1207–1224 (2019). https://doi.org/10.1007/s10514-018-9794-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10514-018-9794-6