Abstract
In this paper, a very first use of the \(\kappa \)-deformed Kaniadakis distribution is made in the context of arbitrary amplitude ion-acoustic solitary waves (IASWs) in a magnetized plasma composed of cold fluid ions and non-Maxwellian electrons. The basic equations governing the dynamics of nonlinear structures are reduced to an evolution equation in the form of an energy-balance like equation through the use of the Sagdeev approach. The deformed average kinetic energy linked with electrons is calculated which restricts to narrow range the allowed values of the deformation parameter \(\kappa \) that develops Kaniadakis entropy. As an application, we analyse the effect of \(\kappa \) on the existence domain as well as on the characteristic behavior of IASWs. The effect of all other relevant plasma parameters (viz., Mach number, strength of magnetic field and obliqueness) is also discussed. The results of the present work may contribute significantly to the current research concerning the use of the generalized entropies in the context of plasma physics.







Similar content being viewed by others
References
Baluku, T.K., Hellberg, M.A.: Phys. Plasmas 19, 012106 (2012)
Biro, T.S., Kaniadakis, G.: Eur. Phys. J. B 50, 3 (2006)
Carvalho, J.C., Do Nascimento, J.D. Jr., Silva, R., De Medeiros, J.R.: Astrophys. J. Lett. 696, L48 (2009)
Carvalho, J.C., Do Nascimento, J.D. Jr., Silva, R., Soares, B.B., De Medeiros, J.R.: Europhys. Lett. 91, 69002 (2010)
Douglas, P., Bergamini, S., Renzoni, F.: Phys. Rev. Lett. 96, 110601 (2006)
Gougam, L.A., Tribeche, M.: Phys. Plasmas 23, 014501 (2016)
Ikezi, H., Taylor, R.J., Baker, R.D.: Phys. Rev. Lett. 25, 11 (1970)
Kaniadakis, G.: Phys. Rev. E 66, 056125 (2002)
Lapenta, G., Markidis, S., Marocchino, A., Kaniadakis, G.: Astrophys. J. 666, 949 (2007)
Lee, L.C., Kan, J.R.: Phys. Fluids 24, 431 (1981)
Liu, B., Goree, J.: Phys. Rev. Lett. 100, 055003 (2008)
Lourek, I., Tribeche, M.: Physica A 441, 215–220 (2016)
Ourabah, K., Tribeche, M.: Phys. Rev. E 89, 062130 (2014)
Rahman, A., Qamar, A., Naseer, S., Naeem, S.N.: Can. J. Phys. 95(7), 655–661 (2017)
Renyi, A.: Acta Math. Hung. 6, 285 (1955)
Rossani, A., Scarfone, A.M.: J. Phys. A 37, 4955 (2004)
Rufai, O.R., Bharuthram, R., Singh, S.V., Lakhina, G.S.: Phys. Plasmas 19, 122308 (2012)
Rufai, O.R., Bharuthram, R., Singh, S.V., Lakhina, G.S.: Phys. Plasmas 21, 082304 (2014)
Sagdeev, R.Z.: In: Leontovich, M.A. (ed.) Rev. Plasma Phys. Consultants Bureau, New York (1966)
Saha, A., Tamang, J.: Adv. Space Res. 63, 1596 (2018)
Sultana, S., Kourakis, I., Saini, N.S., Hellberg, M.A.: Phys. Plasmas 17, 032310 (2010)
Teweldeberhan, A.M., Miller, H.G., Tegen, R.: Int. J. Mod. Phys. E 12, 669 (2003)
Tsallis, C.: J. Stat. Phys. 52, 479 (1988)
Tsallis, C., Cirto, L.J.L.: Eur. Phys. J. C 73, 2487 (2013)
Verheest, F.: J. Phys. A, Math. Theor. 42, 285501 (2009)
Washimi, H., Taniuti, T.: Phys. Rev. Lett. 17, 996 (1966)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Khalid, M., El-Tantawy, S.A. & Rahman, Au. Oblique ion acoustic excitations in a magnetoplasma having \(\kappa \)-deformed Kaniadakis distributed electrons. Astrophys Space Sci 365, 75 (2020). https://doi.org/10.1007/s10509-020-03787-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10509-020-03787-5