Abstract
Monocular depth estimation and semantic segmentation are two fundamental goals of scene understanding. Due to the advantages of task interaction, many works have studied the joint-task learning algorithm. However, most existing methods fail to fully leverage the semantic labels, ignoring the provided context structures and only using them to supervise the prediction of segmentation split, which limits the performance of both tasks. In this paper, we propose a network injected with contextual information (CI-Net) to solve this problem. Specifically, we introduce a self-attention block in the encoder to generate an attention map. With supervision from the ideal attention map created by semantic label, the network is embedded with contextual information so that it could understand the scene better and utilize correlated features to make accurate prediction. Besides, a feature-sharing module (FSM) is constructed to make the task-specific features deeply fused, and a consistency loss is devised to ensure that the features mutually guided. We extensively evaluate the proposed CI-Net on NYU-Depth-v2, SUN-RGBD, and Cityscapes datasets. The experimental results validate that our proposed CI-Net could effectively improve the accuracy of semantic segmentation and depth estimation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Fang B, Mei G, Yuan X, Wang L, Wang Z, Wang J (2021) Visual slam for robot navigation in healthcare facility. Pattern Recogn 113:107822. https://doi.org/10.1016/j.patcog.2021.107822
Husbands P, Shim Y, Garvie M, Dewar A, Domcsek N, Graham P, Knight J, Nowotny T, Philippides A (2021) Recent advances in evolutionary and bio-inspired adaptive robotics: Exploiting embodied dynamics. Appl Intell 51(9):6467–6496. https://doi.org/10.1007/s10489-021-02275-9
Lee D-H, Chen K-L, Liou K-H, Liu C-L, Liu J-L (2020) Deep learning and control algorithms of direct perception for autonomous driving. Appl Intell 51(1):237–247. https://doi.org/10.1007/s10489-020-01827-9
Xu D, Wang W, Tang H, Liu H, Sebe N, Ricci E (2018) Structured attention guided convolutional neural fields for monocular depth estimation. In: 2018 IEEE/CVF conference on computer vision and pattern recognition
Cao Y, Wu Z, Shen C (2018) Estimating depth from monocular images as classification using deep fully convolutional residual networks. IEEE Trans Circ Syst Video Technol 28(11):3174–3182. https://doi.org/10.1109/tcsvt.2017.2740321
Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: 2018 IEEE/CVF conference on computer vision and pattern recognition
Lan X, Gu X, Gu X (2021) MMNet: Multi-modal multi-stage network for RGB-t image semantic segmentation. Appl Intell. https://doi.org/10.1007/s10489-021-02687-7
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Guizilini V, Hou R, Li J, Ambrus R, Gaidon A (2019) Semantically-guided representation learning for self-supervised monocular depth. In: International conference on learning representations
Zhang Z, Cui Z, Xu C, Yan Y, Sebe N, Yang J (2019) Pattern-affinitive propagation across depth, surface normal and semantic segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Zhang Z, Cui Z, Xu C, Jie Z, Li X, Yang J (2020) Joint task-recursive learning for rgb-d scene understanding. IEEE Trans Pattern Anal Mach Intell 42 (10):2608–2623. https://doi.org/10.1109/TPAMI.2019.2926728
Fu H, Gong M, Wang C, Batmanghelich K, Tao D (2018) Deep ordinal regression network for monocular depth estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Jiao J, Cao Y, Song Y, Lau R (2018) Look deeper into depth: Monocular depth estimation with semantic booster and attention-driven loss. In: Computer Vision – ECCV 2018, pp 55–71
Chen Y, Zhao H, Hu Z, Peng J (2021) Attention-based context aggregation network for monocular depth estimation. Int J Mach Learn Cybern 12(6):1583–1596. https://doi.org/10.1007/s13042-020-01251-y
Yu C, Wang J, Gao C, Yu G, Shen C, Sang N (2020) Context prior for scene segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Klingner M, Termöhlen J-A, Mikolajczyk J, Fingscheidt T (2020) Self-supervised monocular depth estimation: Solving the dynamic object problem by semantic guidance. In: Computer Vision – ECCV 2020, pp 582–600
Laina I, Rupprecht C, Belagiannis V, Tombari F, Navab N (2016) Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth international conference on 3D Vision (3DV)
Yin W, Liu Y, Shen C (2021) Virtual normal: Enforcing geometric constraints for accurate and robust depth prediction. IEEE Trans Pattern Anal Mach Intell:1–1. https://doi.org/10.1109/TPAMI.2021.3097396
Zhou W, Zhou E, Liu G, Lin L, Lumsdaine A (2020) Unsupervised monocular depth estimation from light field image. IEEE Trans Image Process 29:1606–1617. https://doi.org/10.1109/TIP.2019.2944343
Ye X, Fan X, Zhang M, Xu R, Zhong W (2021) Unsupervised monocular depth estimation via recursive stereo distillation. IEEE Trans Image Process 30:4492–4504. https://doi.org/10.1109/TIP.2021.3072215
Wu Y, Jiang J, Huang Z, Tian Y (2021) Fpanet: Feature pyramid aggregation network for real-time semantic segmentation. Appl Intell:1–18. https://doi.org/10.1007/s10489-021-02603-z
Qi X, Liao R, Jia J, Fidler S, Urtasun R (2017) 3d graph neural networks for RGBD semantic segmentation. In: 2017 IEEE International Conference on Computer Vision (ICCV)
Hazirbas C, Ma L, Domokos C, Cremers D (2017) FuseNet: Incorporating depth into semantic segmentation via fusion-based CNN architecture. In: Computer Vision – ACCV 2016, pp 213–228
Sun L, Yang K, Hu X, Hu W, Wang K (2020) Real-time fusion network for rgb-d semantic segmentation incorporating unexpected obstacle detection for road-driving images. IEEE Robot Autom Lett 5(4):5558–5565. https://doi.org/10.1109/LRA.2020.3007457
Hu X, Yang K, Fei L, Wang K (2019) ACNET: Attention based network to exploit complementary features for RGBD semantic segmentation. In: 2019 IEEE International Conference on Image Processing (ICIP)
Hung S-W, Lo S-Y, Hang H-M (2019) Incorporating luminance, depth and color information by a fusion-based network for semantic segmentation. In: 2019 IEEE International Conference on Image Processing (ICIP)
Chen L-Z, Lin Z, Wang Z, Yang Y-L, Cheng M-M (2021) Spatial information guided convolution for real-time RGBD semantic segmentation. IEEE Trans Image Process 30:2313–2324. https://doi.org/10.1109/tip.2021.3049332
Liu J, Wang Y, Li Y, Fu J, Li J, Lu H (2018) Collaborative deconvolutional neural networks for joint depth estimation and semantic segmentation. IEEE Trans Neural Netw Learn Syst 29(11):5655–5666. https://doi.org/10.1109/TNNLS.2017.2787781
Xu D, Ouyang W, Wang X, Sebe N (2018) PAD-net: Multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing. In: 2018 IEEE/CVF Conference on computer vision and pattern recognition
He L, Lu J, Wang G, Song S, Zhou J (2021) SOSD-net: Joint semantic object segmentation and depth estimation from monocular images. Neurocomputing 440:251–263. https://doi.org/10.1016/j.neucom.2021.01.126
Hu J, Shen L, Albanie S, Sun G, Wu E (2020) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372
Roy S, Menapace W, Oei S, Luijten B, Fini E, Saltori C, Huijben I, Chennakeshava N, Mento F, Sentelli A, Peschiera E, Trevisan R, Maschietto G, Torri E, Inchingolo R, Smargiassi A, Soldati G, Rota P, Passerini A, van Sloun R J G, Ricci E, Demi L (2020) Deep learning for classification and localization of covid-19 markers in point-of-care lung ultrasound. IEEE Trans Med Imaging 39(8):2676–2687. https://doi.org/10.1109/TMI.2020.2994459
Chen T, An S, Zhang Y, Ma C, Wang H, Guo X, Zheng W (2020) Improving monocular depth estimation by leveraging structural awareness and complementary datasets. In: Computer Vision – ECCV 2020, pp 90–108
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Yu F, Koltun V, Funkhouser T (2017) Dilated residual networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Huynh L, Nguyen-Ha P, Matas J, Rahtu E, Heikkilä J (2020) Guiding monocular depth estimation using depth-attention volume. In: Computer Vision – ECCV 2020, pp 581–597
Silberman N, Hoiem D, Kohli P, Fergus R (2012) Indoor segmentation and support inference from RGBD images. In: Computer Vision – ECCV 2012, pp 746–760
Song S, Lichtenberg S P, Xiao J (2015) SUN RGB-d: A RGB-d scene understanding benchmark suite. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B (2016) The cityscapes dataset for semantic urban scene understanding. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Ming Y, Meng X, Fan C, Yu H (2021) Deep learning for monocular depth estimation: a review. Neurocomputing 438:14–33. https://doi.org/10.1016/j.neucom.2020.12.089
Mohammadi Amiri M, Gündüz D (2020) Machine learning at the wireless edge: Distributed stochastic gradient descent over-the-air. IEEE Trans Signal Process 68:2155–2169. https://doi.org/10.1109/TSP.2020.2981904
Roy A, Todorovic S (2016) Monocular depth estimation using neural regression forest. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 5506–5514
Lin X, Sánchez-Escobedo D, Casas J R, Pardàs M (2019) Depth estimation and semantic segmentation from a single rgb image using a hybrid convolutional neural network. Sensors 19(8). https://doi.org/10.3390/s19081795
Cao Y, Zhao T, Xian K, Shen C, Cao Z, Xu S (2020) Monocular depth estimation with augmented ordinal depth relationships. IEEE Trans Circ Syst Video Technol 30(8):2674–2682. https://doi.org/10.1109/TCSVT.2019.2929202
Ye X, Chen S, Xu R (2021) Dpnet: Detail-preserving network for high quality monocular depth estimation. Pattern Recogn 109:107578. https://doi.org/10.1016/j.patcog.2020.107578
Li B, Dai Y, He M (2018) Monocular depth estimation with hierarchical fusion of dilated CNNs and soft-weighted-sum inference. Pattern Recogn 83:328–339. https://doi.org/10.1016/j.patcog.2018.05.029
Qi X, Liao R, Liu Z, Urtasun R, Jia J (2018) GeoNet: Geometric neural network for joint depth and surface normal estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Hu J, Ozay M, Zhang Y, Okatani T (2019) Revisiting single image depth estimation: toward higher resolution maps with accurate object boundaries. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV)
Yang X, Gao Y, Luo H, Liao C, Cheng K-T (2019) Bayesian denet: Monocular depth prediction and frame-wise fusion with synchronized uncertainty. IEEE Trans Multimed 21(11):2701–2713. https://doi.org/10.1109/TMM.2019.2912121
Hambarde P, Murala S (2020) S2dnet: Depth estimation from single image and sparse samples. IEEE Trans Comput Imaging 6:806–817. https://doi.org/10.1109/TCI.2020.2981761
Lin G, Shen C, van den Hengel A, Reid I (2016) Efficient piecewise training of deep structured models for semantic segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3194–3203
Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Lin G, Milan A, Shen C, Reid I (2017) RefineNet: Multi-path refinement networks for high-resolution semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Nekrasov V, Shen C, Reid I (2018) Light-weight refinenet for real-time semantic segmentation. In: Proceedings of the british machine vision conference, pp 278–284
Valada A, Mohan R, Burgard W (2019) Self-supervised model adaptation for multimodal semantic segmentation. Int J Comput Vis 128 (5):1239–1285. https://doi.org/10.1007/s11263-019-01188-y
Sener O, Koltun V (2018) Multi-task learning as multi-objective optimization. In: NeurIPS
Cipolla R, Gal Y, Kendall A (2018) Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Valada A, Vertens J, Dhall A, Burgard W (2017) AdapNet: Adaptive semantic segmentation in adverse environmental conditions. In: 2017 IEEE International Conference on Robotics and Automation (ICRA)
Valada A, Oliveira G L, Brox T, Burgard W (2017) Deep multispectral semantic scene understanding of forested environments using multimodal fusion. In: Springer Proceedings in Advanced Robotics, pp 465–477
Wang W, Neumann U (2018) Depth-aware CNN for RGB-d segmentation. In: Computer Vision – ECCV 2018, pp 144–161
Wang L, Zhang J, Wang O, Lin Z, Lu H (2020) SDC-depth: Semantic divide-and-conquer network for monocular depth estimation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of Interests
(check journal-specific guidelines for which heading to use): Not Available
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gao, T., Wei, W., Cai, Z. et al. CI-Net: a joint depth estimation and semantic segmentation network using contextual information. Appl Intell 52, 18167–18186 (2022). https://doi.org/10.1007/s10489-022-03401-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-022-03401-x