Abstract
As a practical foundation for a homotopy theory of abstract spacetime, we extend a category of certain compact partially ordered spaces to a convenient category of “locally preordered” spaces. We show that our new category is Cartesian closed that the forgetful functor to the category of compactly generated spaces creates all limits and colimits.
Similar content being viewed by others
References
Borceux, F.: Handbook of categorical algebra 2: categories and structures. In: Encyclopedia of Mathematics and its Applications, vol. 51, pp. xviii+443. Cambridge University Press, Cambridge (1994)
Brown, K.: The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem, algorithms and classification in combinatorial group theory, (Berekely, CA, 1989). Math. Sci. Res. Inst. Publ. 23, 137–163 (1992)
Bubenik, P., Worytkiewicz, K.: A model category for local pospaces. Homology Homotopy Appl. 8(1), 263–292 (2006)
Fahrenberg, U.: Directed homology. In: Proc. GETCO&CMCIM 2003, Electronic Notes in Theoretical Computer Science, vol. 100. Elsevier, Amsterdam (2004)
Fajstrup, L., Goubault, E., Haucourt, E., Raussen, M.: Components of the fundamental category. Appl. Categ. Structures 12(1), 84–108 (2004)
Fajstrup, L., Goubault, E., Raussen, M.: Algebraic topology and concurrency. Theoret. Comput. Sci. 357(1–3), 241–278 (2006)
Gaucher, P.: A model category for the homotopy theory of concurrency. Homology Homotopy Appl. 5(1), 549–599 (2003)
Gierz, G., Hoffman, K.H., Keimel, K., Lawsonj, J.D., Mislove, M., Scott, D.S.: Continuous lattices and domains. In: Encyclopedia of Mathematics and Applications, vol. 63. Cambridge University Press, Cambridge (2003)
Goubault, E.: Geometry and concurrency: a user’s guide. Math. Structures Comput. Sci. 10(4), 411–425 (2000)
Goubault, E., Goubault-Larrecq, J.: On the geometry of intutionistic S4 proofs. Homology Homotopy Appl. 5(2), 137–209 (2003)
Goubault, E., Haucourt, E.: Components of the fundamental category II. Appl. Categ. Structures 15(4), 387–414 (2007)
Grandis, M.: Directed homotopy theory. I.. Cahiers Topologie Géom. Differentielle Catég. 44(4), 281–316 (2003)
Grandis, M.: Directed homotopy theory. II. Homotopy constructs. Theory Appl. Categ. 10(14), 369–391 (2002)
Grandis, M.: Inequilogical spaces, directed homology and noncommutative geometry. Homology Homotopy Appl. 6(1), 413–437 (2004)
Grandis, M.: Ordinary and directed combinatorial homotopy, applied to image analysis and concurrency. Homology Homotopy Appl. 5(2), 211–231 (2003)
Haucourt, E.: Comparing topological models for concurrency. In: GETCO 2005 proceedings, San Francisco, 23–26 August 2005
Kobayashi, Y.: Complete rewriting systems and homology of monoid algebras. J. Pure Appl. Algebra 65(3), 263–275 (1990)
Kobayashi, Y., Otto, F., Squier, C.: A finiteness condition for rewriting systems. Theoret. Comput. Sci. 131, 271–294 (1994)
Krishnan, S.: A homotopy theory of locally preordered spaces. Ph.D. thesis, University of Chicago, Chicago IL (2006)
Lafont, Y.: A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier). J. Pure Appl. Algebra 98, 229–244 (1995)
Nachbin, L.: Topology and order, translated from the Portuguese by Lulu Bechtolsheim. Van Nostrand Math. Stud. 4, 122 (1965)
Patchkoria, A.: Homology and cohomology monoids of presimplicial semimodules. Bulletin of the Georgian Academy of Sciences 162(1), 9–12 (2000)
Pratt, V.: Modelling concurrency with geometry. In: Proc. 18th ACM Symp. on Principles of Programming Languages, pp. 311–322. New York, ACM (1991)
Squier, C.C.: Word problems and a homological finiteness condition for monoids. J. Pure Appl. Algebra 49, 201–217 (1987)
Steenrod, N.: A convenient category of spaces. Michigan Math. J. 14, 133–152 (1967)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Krishnan, S. A Convenient Category of Locally Preordered Spaces. Appl Categor Struct 17, 445–466 (2009). https://doi.org/10.1007/s10485-008-9140-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-008-9140-9