Abstract
We applied five sets of criteria for pollen season (PS) definition, which are associated with the ‘clinical’, ‘grains’, ‘logistic’, ‘moving average’ and ‘percentage’ methods, on a 30-year time series of daily airborne pollen concentration values of Cupressaceae (cypress family), Oleaceae (olive family) and Poaceae (grass family), from Thessaloniki, Greece. These methods could identify a pollen season for more than 90% of the study period for all three taxa, except for the clinical that identified less than 40% for Oleaceae. The estimated values of the PS start, end, and duration varied largely, in a method-specific way. Even significant reverse patterns of change were recorded for the same attribute and taxon, as for the Poaceae PS end date that shows a significant advance earlier in the year with the moving average method and delay with the percentage. As the season peak date is method-independent and, hence, directly comparable, we recommend this attribute to be examined in airborne pollen studies. Results taken with the percentage method could be compared with those of the past for Thessaloniki, with a more than 10-year shorter time series. No climate-related change was detected for Cupressaceae PS attributes, but an earlier peak was now detected for Oleaceae and Poaceae, and a later end and a longer duration for Poaceae, suggesting an increased allergy risk for this taxon. The different criteria concurrently applied for PS definition that led to even greatly diverging results for the same PS attribute is an issue for the science and calls for efforts at standardization.
Similar content being viewed by others
References
Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana, 30(1), 269–275. https://doi.org/10.1080/00173139109427810
Augé, J., Vent, J., Agache, I., Airaksinen, L., Campo Mozo, P., Chaker, A., et al. (2018). EAACI Position paper on the standardization of nasal allergen challenges. Allergy, 73(8), 1597–1608. https://doi.org/10.1111/all.13416
Bastl, K., Bastl, M., Geller-Bernstein, C., Berger, U., & Ager, S. (2015). Can we improve pollen season definitions by using the symptom load index in addition to pollen counts? Environmental Pollution, 2015, 109–116. https://doi.org/10.1016/j.envpol.2015.04.016
Bogawski, P., Grewling, Ł, Nowak, M., Smith, M., & Jackowiak, B. (2014). Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland). International Journal of Biometeorology, 58(8), 1759–1768. https://doi.org/10.1007/s00484-013-0781-5
Bonofiglio, T., Orlandi, F., Ruga, L., Romano, B., & Fornaciari, M. (2013). Climate change impact on the olive pollen season in Mediterranean areas of Italy: Air quality in late spring from an allergenic point of view. Environmental Monitoring and Assessment, 185(1), 877–890. https://doi.org/10.1007/s10661-012-2598-9
Charalampopoulos, A., Damialis, A., Lazarina, M., Halley, J. M., & Vokou, D. (2021). Spatiotemporal assessment of airborne pollen in the urban environment: The pollenscape of Thessaloniki as a case study. Atmospheric Environment, 247, 118185. https://doi.org/10.1016/j.atmosenv.2021.118185
Charalampopoulos, A., Lazarina, M., Tsiripidis, I., & Vokou, D. (2018). Quantifying the relationship between airborne pollen and vegetation in the urban environment. Aerobiologia, 34(3), 285–300. https://doi.org/10.1007/s10453-018-9513-y
Cristofolini, F., Anelli, P., Billi, B. M., Bocchi, C., Borney, M. F., Bucher, E., et al. (2020). Temporal trends in airborne pollen seasonality: Evidence from the Italian POLLnet network data. Aerobiologia, 36(1), 63–70. https://doi.org/10.1007/s10453-019-09609-8
Cunha, M., Ribeiro, H., Costa, P., & Abreu, I. (2015). A comparative study of vineyard phenology and pollen metrics extracted from airborne pollen time series. Aerobiologia, 31(1), 45–56. https://doi.org/10.1007/s10453-014-9345-3
Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41(33), 7011–7021. https://doi.org/10.1016/j.atmosenv.2007.05.009
de Weger, L. A., Bruffaerts, N., Koenders, M. M. J. F., Verstraeten, W. W., Delcloo, A. W., Hentges, P., & Hentges, F. (2021). Long-term pollen monitoring in the benelux: Evaluation of allergenic pollen levels and temporal variations of pollen seasons. Frontiers in Allergy, 2, 30. https://doi.org/10.3389/falgy.2021.676176
Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30(4), 385–395. https://doi.org/10.1007/s10453-014-9335-5
Galán, C., Emberlin, J., Domínguez, E., Bryant, R. H., & Villamandos, F. (1995). A comparative analysis of daily variations in the gramineae pollen counts at córdoba, Spain and London, UK. Grana, 34(3), 189–198. https://doi.org/10.1080/00173139509429042
García-Mozo, H., Galán, C., Cariñanos, P., Alcazar, P., Méndez, J., Vendrell, M., et al. (1999). Variations in the Quercus sp. pollen season at selected sites in Spain.
García-Mozo, H., Galán, C., Alcázar, P., de la Guardia, C. D., Nieto-Lugilde, D., Recio, M., et al. (2010). Trends in grass pollen season in southern Spain. Aerobiologia, 26(2), 157–169. https://doi.org/10.1007/s10453-009-9153-3
Gehrig, R., & Clot, B. (2021). 50 Years of Pollen Monitoring in Basel (Switzerland) Demonstrate the Influence of Climate Change on Airborne Pollen. Frontiers in Allergy. https://doi.org/10.3389/falgy.2021.677159
Gioulekas, D., Balafoutis, C., Damialis, A., Papakosta, D., Gioulekas, G., & Patakas, D. (2004). Fifteen years’ record of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece. International Journal of Biometeorology, 48(3), 128–136. https://doi.org/10.1007/s00484-003-0190-2
Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x
HNMS, H. N. M. S. (2019). Climatic Data for selected stations in Greece Thessaloniki, Mikra. http://www.hnms.gr/emy/en/climatology/climatology_city. Accessed December 11, 2019.
Hoebeke, L., Bruffaerts, N., Verstraeten, C., Delcloo, A., De Smedt, T., Packeu, A., et al. (2018). Thirty-four years of pollen monitoring: An evaluation of the temporal variation of pollen seasons in Belgium. Aerobiologia, 34(2), 139–155. https://doi.org/10.1007/s10453-017-9503-5
Hoffmann, T. M., Acar Şahin, A., Aggelidis, X., Arasi, S., Barbalace, A., Bourgoin, A., et al. (2020). “Whole” vs. “fragmented” approach to EAACI pollen season definitions: A multicenter study in six Southern European cities. Allergy, 75(7), 1659–1671. https://doi.org/10.1111/all.14153
Jato, V., Rodríguez-Rajo, F. J., Alcázar, P., De Nuntiis, P., Galán, C., & Mandrioli, P. (2006). May the definition of pollen season influence aerobiological results? Aerobiologia, 22(1), 13. https://doi.org/10.1007/s10453-005-9011-x
Karatzas, K., Tsiamis, A., Charalampopoulos, A., Damialis, A., & Vokou, D. (2019). Pollen season identification for three pollen taxa in Thessaloniki, Greece: A 30-year retrospective analysis. Aerobiologia. https://doi.org/10.1007/s10453-019-09605-y
Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2), 164–168.
Lind, T., Ekebom, A., Alm Kübler, K., Östensson, P., Bellander, T., & Lõhmus, M. (2016). Pollen Season Trends (1973–2013) in Stockholm Area, Sweden. PLoS ONE, 11(11), e0166887. https://doi.org/10.1371/journal.pone.0166887
Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20(3), 179–182. https://doi.org/10.1080/00173138109427661
Pfaar, O., Alvaro, M., Cardona, V., Hamelmann, E., Mösges, R., & Kleine-Tebbe, J. (2018). Clinical trials in allergen immunotherapy: Current concepts and future needs. Allergy, 73(9), 1775–1783. https://doi.org/10.1111/all.13429
Pfaar, O., Bastl, K., Berger, U., Buters, J., Calderon, M. A., Clot, B., et al. (2017). Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen-induced rhinoconjunctivitis - an EAACI position paper. Allergy, 72(5), 713–722. https://doi.org/10.1111/all.13092
Ribeiro, H., Cunha, M., & Abreu, I. (2007). Definition of main pollen season using a logistic model. Annals of Agricultural and Environmental Medicine: AAEM, 14(2), 259–264.
Rojo, J., Picornell, A., & Oteros, J. (2019). AeRobiology: The computational tool for biological data in the air. Methods in Ecology and Evolution, 10(8), 1371–1376. https://doi.org/10.1111/2041-210X.13203
Smith, M., Jäger, S., Berger, U., Šikoparija, B., Hallsdottir, M., Sauliene, I., et al. (2014). Geographic and temporal variations in pollen exposure across Europe. Allergy, 69(7), 913–923. https://doi.org/10.1111/all.12419
Stergioudis, A., & Savvaidis, P. (2012). Urban vegetation quantification with satellite data and remote sensing techniques: The Case of the City of Thessaloniki, Greece. South-Eastern European Journal of Earth Observation and Geomatics, 1.
Ziska, L. H., Makra, L., Harry, S. K., Bruffaerts, N., Hendrickx, M., Coates, F., et al. (2019). Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: A retrospective data analysis. The Lancet Planetary Health, 3(3), e124–e131. https://doi.org/10.1016/S2542-5196(19)30015-4
Acknowledgements
The research was supported by the Municipality of Thessaloniki, Greece (Directorate for the Management of the Urban Environment, Department of Environment).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Tasioulis, T., Karatzas, K., Charalampopoulos, A. et al. Five ways to define a pollen season: exploring congruence and disparity in its attributes and their long-term trends. Aerobiologia 38, 71–83 (2022). https://doi.org/10.1007/s10453-021-09735-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10453-021-09735-2