Abstract
This paper proposes a new type of multilevel method for solving the Steklov eigenvalue problem based on Newton’s method. In this iteration method, solving the Steklov eigenvalue problem is replaced by solving a small-scale eigenvalue problem on the coarsest mesh and a sequence of augmented linear problems on refined meshes, derived by Newton step. We prove that this iteration scheme obtains the optimal convergence rate with linear complexity, which improves the overall efficiency of solving the Steklov eigenvalue problem. Moreover, an adaptive iteration scheme for multi eigenvalues based on this new multilevel method is given. Finally, some numerical experiments are provided to illustrate the efficiency of the proposed multilevel scheme.
Similar content being viewed by others
References
Adams, R.: Sobolev Spaces. Academic Press, New York (1975)
Ahn, H.: Vibration of a pendulum consisting of a bob suspended from a wire. Quart. Appl. Math. 39, 109–117 (1981)
Andreev, A., Todorov, T.: Isoparametric finite element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24, 309–322 (2004)
Armentano, M., Padra, C.: A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58, 593–601 (2008)
Bramble, J., Osborn, J.: Approximation of Steklov eigenvalues of non-selfadjoint second-order elliptic operators. In: Aziz, A. (ed.) Mathematical Foundations of the Finite Element Method with Applications to PDEs, pp 387–408. Academic Press, New York (1972)
Babuška, I., Osborn, J.: Finite element Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math Comput. 52 (186), 275–297 (1989)
Babuška, I., Osborn, J. In: Ciarlet P., Lions J. (eds.) : Eigenvalue Problems, Volume II of Handbook of Numerical Analysis. Elsevier Science B.V., North-Holland (1991)
Benzi, M., Golub, G. H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)
Bergman, S., Schiffer, M.: Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Academic Press, New York (1953)
Bermudez, A., Rodriguez, R., Santamarina, D.: A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87, 201–227 (2000)
Bi, H., Yang, Y.: A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem. Appl. Math. Comput. 217 (23), 9669–9678 (2011)
Bi, H., Li, H., Yang, Y.: An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem. Appl. Numer. Math. 105, 64–81 (2016)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991)
Bucur, D., Ionescu, I.: Asymptotic analysis and scaling of friction parameters. Z. Angew. Math. Phys. 57, 1–15 (2006)
Cao, L., Zhang, L., Allegretto, W., Lin, Y.: Multiscale asymptotic method for Steklov eigenvalue equations in composite media. SIAM J. Numer. An. 51(1), 273–296 (2013)
Conca, C., Planchard, J., Vanninathanm, M.: Fluid and Periodic Structures. Wiley, New York (1995)
Garau, E., Morin, P.: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J. Numer. Anal. 31(3), 914–946 (2010)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)
Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)
Han, X., Li, Y., Xie, H.: A multilevel correction method for steklov eigenvalue problem by nonconforming finite element methods. Numer. Math. Theor. Meth. Appl. 8(3), 383–405 (2015)
He, Y., Li, Y., Xie, H., You, C., Zhang, N.: A multilevel newton’s method for eigenvalue problems. Appl. Math. 63(3), 281–303 (2018)
Hinton, D., Shaw, J.: Differential operators with spectral parameter incompletely in the boundary conditions. Funkcialaj Ekvac. 33, 363–385 (1990)
Li, Q., Lin, Q., Xie, H.: Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. Appl. Math. 58(2), 129–151 (2013)
Li, Q., Yang, Y.: A two-grid discretization scheme for the Steklov eigenvalue problem. J. Appl. Math. Comput. 36, 129–139 (2011)
Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)
Lin, Q., Xie, H.: A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems. In: Brandts, J., Chleboun, J., Korotov, S., Segeth, K., Šístek, J., Vejchodský, T. (eds.) Proceedings of the International Conference: Applications of Mathematics 2012, pp 134–143 (2012)
Miao, C.: Computing eigenpairs in augmented Krylov subspace produced by Jacobi-Davidson correction equation. J. Comput. Appl. Math. 343, 363–372 (2018)
Monk, P., Zhang, Y.: An HDG method for the Steklov eigenvalue problem. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/drab017 (2021)
Russo, A., Alonso, A.: A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems. Comput. Math. Appl. 62(11), 4100–4117 (2011)
Saad, Y.: Numerical methods for large eigenvalue problems. SIAM (1992)
Sleijpen, G., Vorst, H.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42(2), 267–293 (2000)
Sleijpen, G., Vorst, H.: The Jacobi-Davidson Method for Eigenvalue Problems and its Relation with Accelerated Inexact Newton Scheme. In: Margenov, S., Vassilevski, P. (eds.) Iterative Methods in Linear Algebra II, IMACS Series in Computational and Applied Mathematics 3, pp 377–389. IMACS, New Brunswick (1996)
Xie, H.: A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34, 592–608 (2014)
Xie, M., Xu, F., Yue, M.: A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering. ESAIM Math. Model. Numer. Anal. 55(5), 1779–1802 (2021)
Xu, F., Xie, H., Xie, M., Yue, M.: A multigrid method for the ground state solution of Bose-Einstein condensates based on Newton iteration. BIT Numer. Math. 61(2), 645–663 (2021)
Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)
Acknowledgements
The authors would like to thank Prof. Hehu Xie (Chinese Academy of Sciences) for his stimulating discussions and fruitful cooperation that have motivated this work. They also would like to thank the anonymous referees for their careful reading and valuable comments and suggestions that helped to improve the contents and presentation of this paper.
Funding
The work of the second author (F. Xu) was supported by the National Natural Science Foundation of China (11801021). The work of the third author (M. Xie) was supported by the National Natural Science Foundation of China (12001402, 12071343).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Communicated by: Long Chen
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yue, M., Xu, F. & Xie, M. A multilevel Newton’s method for the Steklov eigenvalue problem. Adv Comput Math 48, 33 (2022). https://doi.org/10.1007/s10444-022-09934-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-022-09934-6
Keywords
- Steklov eigenvalue problem
- Finite element method
- Newton’s method
- Multilevel iteration
- Adaptive algorithm