Abstract
This paper presents the permeability analysis of neuroactive drugs and correlation with in vivo brain/plasma ratios in a dynamic microfluidic blood–brain barrier (BBB) model. Permeability of seven neuroactive drugs (Ethosuximide, Gabapentin, Sertraline, Sunitinib, Traxoprodil, Varenicline, PF-304014) and trans-endothelial electrical resistance (TEER) were quantified in both dynamic (microfluidic) and static (transwell) BBB models, either with brain endothelial cells (bEnd.3) in monoculture, or in co-culture with glial cells (C6). Dynamic cultures were exposed to 15 dyn/cm2 shear stress to mimic the in vivo environment. Dynamic models resulted in significantly higher average TEER (respective 5.9-fold and 8.9-fold increase for co-culture and monoculture models) and lower drug permeabilities (average respective decrease of 0.050 and 0.052 log(cm/s) for co-culture and monoculture) than static models; and co-culture models demonstrated higher average TEER (respective 90 and 25% increase for static and dynamic models) and lower drug permeability (average respective decrease of 0.063 and 0.061 log(cm/s) for static and dynamic models) than monoculture models. Correlation of the resultant logP e values [ranging from −4.06 to −3.63 log(cm/s)] with in vivo brain/plasma ratios (ranging from 0.42 to 26.8) showed highly linear correlation (R 2 > 0.85) for all model conditions, indicating the feasibility of the dynamic microfluidic BBB model for prediction of BBB clearance of pharmaceuticals.









Similar content being viewed by others
Abbreviations
- μBBB:
-
Microfluidic blood–brain barrier
- CAN:
-
Acetonitrile
- APTES:
-
3-aminopropyltriethoxysilane
- AUC:
-
Area under the curve
- B/P:
-
Brain/plasma ratio
- BBB:
-
Blood–brain barrier
- CNS:
-
Central nervous system
- DAPI:
-
4′,6-Diamidino-2-phenylindole
- DMSO:
-
Dimethylsiloxane
- HPLC:
-
High performance liquid chromatography
- LC–MS:
-
Liquid chromatography-mass spectrometry
- LDH:
-
Lactate dehydrogenase
- OPA:
-
ο-Phthalaldehyde
- PBS:
-
Phosphate buffered saline
- PC:
-
Polycarbonate
- PDMS:
-
Polydimethylsiloxane
- PK:
-
Pharmacokinetic
- TEER:
-
Trans-endothelial electrical resistance
- ZO-1:
-
Zonal occludin-1
References
Abbott, N. J. Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov. Today Technol. 1:407–416, 2004.
Achyuta, A. K. H., A. J. Conway, R. B. Crouse, E. C. Bannister, R. N. Lee, C. P. Katnik, A. A. Behensky, J. Cuevas, and S. S. Sundaram. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip. 13:542–553, 2013.
Adams, C. P., and V. V. Brantner. Estimating the cost of new drug development: is it really 802 million dollars? Health Aff. (Millwood). 25:420–428, 2006.
Aran, K., L. A. Sasso, N. Kamdar, and J. D. Zahn. Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab Chip. 10:548–552, 2010.
Booth, R., and H. Kim. Characterization of a microfluidic in vitro model of the blood–brain barrier (μbbb). Lab Chip. 12:1784–1792, 2012.
Booth, R., S. Noh, and H. Kim. A multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells. Lab Chip. 14(11):1880–1890, 2014.
Bynum, J. Unpublished Tabulations Based on Data from the Medicare Current Beneficiary Survey for 2008. Nov 2011, Dartmouth Medical School
Cecchelli, R., V. Berezowski, S. Lundquist, M. Culot, M. Renftel, M. P. Dehouck, and L. Fenart. Modelling of the blood–brain barrier in drug discovery and development. Nat. Rev. Drug Discov. 6:650–661, 2007.
Chien, S. Molecular basis of rheological modulation of endothelial functions: importance of stress direction. Biorheology 43:95–116, 2006.
Chien, S., S. Li, and Y. J. Shyy. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31:162–169, 1998.
Chueh, B. H., D. Huh, C. R. Kyrtsos, T. Houssin, N. Futai, and S. Takayama. Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal. Chem. 79:3504–3508, 2007.
Couchman, L., M. Birch, R. Ireland, A. Corrigan, S. Wickramasinghe, D. Josephs, J. Spicer, and R. Flanagan. An automated method for the measurement of a range of tyrosine kinase inhibitors in human plasma or serum using turbulent flow liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 403:1685–1695, 2012.
Crivori, P., G. Cruciani, P.-A. Carrupt, and B. Testa. Predicting blood–brain barrier permeation from three-dimensional molecular structure. J. Med. Chem. 43:2204–2216, 2000.
Cucullo, L., M. S. McAllister, K. Kight, L. Krizanac-Bengez, M. Marroni, M. R. Mayberg, K. A. Stanness, and D. Janigro. A new dynamic in vitro model for the multidimensional study of astrocyte–endothelial cell interactions at the blood–brain barrier. Brain Res. 951:243–254, 2002.
Cucullo, L., M. Hossain, V. Puvenna, N. Marchi, and D. Janigro. The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci. 12:40, 2011.
De Boer, A., I. Van Der Sandt, and P. Gaillard. The role of drug transporters at the blood–brain barrier. Ann. Rev. Pharmacol. Toxicol. 43:629–656, 2003.
Deak, K., K. Takacs-Novak, K. Tihanyi, and B. Noszal. Physico-chemical profiling of antidepressive sertraline: solubility, ionisation, lipophilicity. Med. Chem. 2:385–389, 2006.
Desai, S. Y., M. Marroni, L. Cucullo, L. Krizanac-Bengez, M. R. Mayberg, M. T. Hossain, G. G. Grant, and D. Janigro. Mechanisms of endothelial survival under shear stress. Endothelium 9:89–102, 2002.
Ferri, C. P., M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, and Y. Huang. Global prevalence of dementia: a delphi consensus study. Lancet 366:2112–2117, 2006.
Galan-Valiente, J., R. Soto-Otero, and G. Sierra-Marcuño. Simultaneous measurement of ethosuximide and phenobarbital in brain tissue, serum and urine by HPLC. Biomed. Chromatogr. 3:49–52, 1989.
Gloor, S. M., M. Wachtel, M. F. Bolliger, H. Ishihara, R. Landmann, and K. Frei. Molecular and cellular permeability control at the blood–brain barrier. Brain Res. Rev. 36:258–264, 2001.
Griep, L., F. Wolbers, B. de Wagenaar, P. Ter Braak, B. Weksler, I. A. Romero, P. Couraud, I. Vermes, A. van der Meer, and A. van den Berg. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood–brain barrier function. Biomed. Microdevices 15:145–150, 2013.
Hebert, L. E., L. A. Beckett, P. A. Scherr, and D. A. Evans. Annual incidence of alzheimer disease in the united states projected to the years 2000 through 2050. Alzheimer Dis. Assoc. Disord. 15:169–173, 2001.
Henderson, J., R. D. Ricker, B. A. Bidlingmeyer, and C. Woodward. Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids. Amino Acid Anal. Zorbax Eclipse AAA Columns Agilent. 1100:1–10, 2000.
Jain, D. S., M. Sanyal, G. Subbaiah, U. Pande, and P. Shrivastav. Rapid and sensitive method for the determination of sertraline in human plasma using liquid chromatography–tandem mass spectrometry (LC–MS/MS). J. Chromatogr. B 829:69–74, 2005.
Johnson, K., A. Shah, S. Jaw-Tsai, J. Baxter, and C. Prakash. Metabolism, pharmacokinetics, and excretion of a highly selectiven-methyl-d-aspartate receptor antagonist, traxoprodil, in human cytochrome p450 2d6 extensive and poor metabolizers. Drug Metab. Dispos. 31:76–87, 2003.
Kola, I., and J. Landis. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3:711–716, 2004.
Kushnir, M. M., J. Crossett, P. I. Brown, and F. M. Urry. Analysis of gabapentin in serum and plasma by solid-phase extraction and gas chromatography-mass spectrometry for therapeutic drug monitoring. J. Anal. Toxicol. 23:1–6, 1999.
Li, G., M. J. Simon, L. M. Cancel, Z. D. Shi, X. Ji, J. M. Tarbell, B. Morrison, 3rd, and B. M. Fu. Permeability of endothelial and astrocyte cocultures: in vitro blood–brain barrier models for drug delivery studies. Ann. Biomed. Eng. 38:2499–2511, 2010.
Nakagawa, S., M. A. Deli, H. Kawaguchi, T. Shimizudani, T. Shimono, A. Kittel, K. Tanaka, and M. Niwa. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 54:253–263, 2009.
Neuhaus, W., R. Lauer, S. Oelzant, U. P. Fringeli, G. F. Ecker, and C. R. Noe. A novel flow based hollow-fiber blood–brain barrier in vitro model with immortalised cell line pbmec/c1-2. J. Biotechnol. 125:127–141, 2006.
Neuhaus, W., V. E. Plattner, M. Wirth, B. Germann, B. Lachmann, F. Gabor, and C. R. Noe. Validation of in vitro cell culture models of the blood–brain barrier: tightness characterization of two promising cell lines. J. Pharm. Sci. 97:5158–5175, 2008.
Obach, R. S., A. E. Reed-Hagen, S. S. Krueger, B. J. Obach, T. N. O’Connell, K. S. Zandi, S. Miller, and J. W. Coe. Metabolism and disposition of varenicline, a selective α4β2 acetylcholine receptor partial agonist, in vivo and in vitro. Drug Metab. Disposit. 34:121–130, 2006.
Oberoi, R. K., R. K. Mittapalli, J. Fisher, and W. F. Elmquist. Sunitinib LC-MS/MS assay in mouse plasma and brain tissue: application in CNS distribution studies. Chromatographia 76:1657–1665, 2013.
Omidi, Y., L. Campbell, J. Barar, D. Connell, S. Akhtar, and M. Gumbleton. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood–brain barrier model for drug uptake and transport studies. Brain Res. 990:95–112, 2003.
Pangalos, M. N., L. E. Schechter, and O. Hurko. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat. Rev. Drug Discov. 6:521–532, 2007.
Pardridge, W. M. The blood–brain barrier: bottleneck in brain drug development. NeuroRx. 2:3–14, 2005.
Pardridge, W. M., W. H. Oldendorf, P. Cancilla, and H. J. Frank. Blood–brain barrier: interface between internal medicine and the brain. Annal. Intern. Med. 105:82–95, 1986.
Pardridge, W. M., D. Triguero, J. Yang, and P. A. Cancilla. Comparison of in vitro and in vivo models of drug transcytosis through the blood–brain barrier. J. Pharmacol. Exp. Ther. 253:884–891, 1990.
Peeters, M., M. J. Gunthorpe, P. J. Strijbos, P. Goldsmith, N. Upton, and M. F. James. Effects of pan- and subtype-selective n-methyl-d-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J. Pharmacol. Exp. Ther. 321:564–572, 2007.
Polk, B. J., A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan. Ag/AgCl microelectrodes with improved stability for microfluidics. Sensors Actuators B 114:239–247, 2006.
Prabhakarpandian, B., M.-C. Shen, J. B. Nichols, I. R. Mills, M. Sidoryk-Wegrzynowicz, M. Aschner, and K. Pant. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip. 13:1093–1101, 2013.
Reichel, A. Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem. Biodivers. 6:2030–2049, 2009.
Rollema, H., A. Shrikhande, K. M. Ward, F. D. Tingley, 3rd, J. W. Coe, B. T. O’Neill, E. Tseng, E. Q. Wang, R. J. Mather, R. S. Hurst, K. E. Williams, M. de Vries, T. Cremers, S. Bertrand, and D. Bertrand. Pre-clinical properties of the alpha4beta2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br. J. Pharmacol. 160:334–345, 2010.
Summerfield, S. G., A. J. Lucas, R. A. Porter, P. Jeffrey, R. N. Gunn, K. R. Read, A. J. Stevens, A. C. Metcalf, M. C. Osuna, P. J. Kilford, J. Passchier, and A. D. Ruffo. Toward an improved prediction of human in vivo brain penetration. Xenobiotica 38:1518–1535, 2008.
Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431, 2005.
Vastag, M., and G. M. Keseru. Current in vitro and in silico models of blood–brain barrier penetration: a practical view. Curr. Opin. Drug Discov. Dev. 12:115–124, 2009.
Wang, Y., and D. F. Welty. The simultaneous estimation of the influx and efflux blood–brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm. Res. 13:398–403, 1996.
Wolburg, H., S. Noell, A. Mack, K. Wolburg-Buchholz, and P. Fallier-Becker. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 335:75–96, 2009.
Wood, K. M., T. A. Lanz, K. J. Coffman, S. L. Becker, J. van Deusen, C. E. Nolan, K. E. Richter, J. E. Finley, T. M. Brown, and M. A. Brodney. P2-375: efficacy of the novel γ-secretase inhibitor, Pf-3084014, in reducing aβ in brain, CSF, and plasma in guinea pigs and tg2576 mice. Alzheimer’s Dement. 4:T482–T483, 2008.
Yuan, W., G. Li, E. S. Gil, T. L. Lowe, and B. M. Fu. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes. Ann. Biomed. Eng. 38:1463–1472, 2010.
Zehendner, C. M., H. J. Luhmann, and C. R. Kuhlmann. Studying the neurovascular unit: an improved blood–brain barrier model. J. Cereb. Blood Flow Metab. 29:1879–1884, 2009.
Zhang, Y., C. S. Li, Y. Ye, K. Johnson, J. Poe, S. Johnson, W. Bobrowski, R. Garrido, and C. Madhu. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood–brain barrier permeability. Drug Metab. Dispos. 34:1935–1943, 2006.
Zhang, L., H. Zhu, T. I. Oprea, A. Golbraikh, and A. Tropsha. Qsar modeling of the blood–brain barrier permeability for diverse organic compounds. Pharm. Res. 25:1902–1914, 2008.
Acknowledgements
This project has been supported by the Utah Science Technology and Research Initiative (USTAR). Microfabrication was performed at the University of Utah Nano Fabrication Facility located in the Sorenson Molecular Biotechnology Building. CNS drugs were provided by Pfizer through the compound transfer program. LC–MS and HPLC–UV was performed at the University of Utah Health Sciences Center (HSC) Core Lab.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Sriram Neelamegham oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Booth, R., Kim, H. Permeability Analysis of Neuroactive Drugs Through a Dynamic Microfluidic In Vitro Blood–Brain Barrier Model. Ann Biomed Eng 42, 2379–2391 (2014). https://doi.org/10.1007/s10439-014-1086-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-014-1086-5