[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Microfluidics for particle synthesis from photocrosslinkable materials

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper is a review of microfluidics for particle synthesis from photocrosslinkable materials. Microfluidics for particle synthesis is rapidly gaining attention as a viable method for the synthesis of particles with applications in drug delivery, security, abrasives, rheology, catalysis and other areas. Particle synthesis can follow several schemes, but the focus of this review is particle synthesis from photocrosslinkable materials. In these systems, solid particles are formed by the light-initiated cross-linking of precursor materials. This review begins with a discussion of photocrosslinkable materials, typically synthetic hydrogels for particle synthesis applications. Next, polydimethyl siloxane and glass devices are presented as the primary microfluidic devices for synthesis from photocrosslinkable materials. Then, the review discusses three types of polymeric particles: spherical, spheroidal and Janus. Subsequently, composite particles and metal or metal oxide particles are discussed. The review closes with a discussion of particle throughput and the outlook for the field of particle synthesis from photocrosslinkable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abate AR, Weitz DA (2011) Syringe-vacuum microfluidics: a portable technique to create monodisperse emulsions. Biomicrofluidics 5(1):014107–014108

    Google Scholar 

  • Abate AR, Krummel AT, Lee D, Marquez M, Holtze C, Weitz DA (2008) Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability. Lab Chip 8(12):2157–2160

    Google Scholar 

  • Abate AR, Thiele J, Weitz DA (2010) One-step formation of multiple emulsions in microfluidics. Lab Chip 11(2):253–258

    Google Scholar 

  • Abou-Hassan A, Sandre O, Cabuil V (2010) Microfluidics in Inorganic Chemistry. Angew Chem Int Ed 49(36):6268–6286

    Google Scholar 

  • Alveroglu E, Sozeri H, Baykal A, Kurtan U, Senel M (2013) Fluorescence and magnetic properties of hydrogels containing Fe3O4 nanoparticles. J Mol Struct 1037:361–366

    Google Scholar 

  • Baah D, Vickers D, Hollinger A, Floyd-Smith T (2008) Patterned dispersion of nanoparticles in hydrogels using microfluidics. Mater Lett 62(23):3833–3835

    Google Scholar 

  • Baah D, Tigner J, Bean K, Britton B, Walker N, Henderson G, Floyd-Smith T (2011) Preparation of planar graded refractive index nanocomposites using microfluidics. Mater Sci Eng, B 176(12):883–888

    Google Scholar 

  • Baah D, Tigner J, Bean K, Walker N, Britton B, Floyd-Smith T (2012) Microfluidic synthesis and post processing of non-spherical polymeric microparticles. Microfluid Nanofluid 12(1–4):657–662

    Google Scholar 

  • Baah D, Donnell T, Tigner J, Floyd-Smith T (2013) Stop flow lithography synthesis of non-spherical metal oxide particles. Particuology. doi:10.1016/j.partic.2013.09.001

  • Barnes H (1989) Shear-thickening (‘Dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33(2):329–366

    Google Scholar 

  • Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045

    Google Scholar 

  • Barua S, Yoo J-W, Kolhar P, Wakankar A, Gokarn YR, Mitragotri S (2013) Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci 110(9):3270–3275

    Google Scholar 

  • Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588–590

    Google Scholar 

  • Bong KW, Bong KT, Pregibon DC, Doyle PS (2010) Hydrodynamic focusing lithography. Angew Chem 122(1):91–94

    Google Scholar 

  • Bong KW, Chapin SC, Pregibon DC, Baah D, Floyd-Smith TM, Doyle PS (2011) Compressed-air flow control system. Lab Chip 11(4):743–747

    Google Scholar 

  • Bong KW, Xu J, Kim J-H, Chapin SC, Strano MS, Gleason KK, Doyle PS (2012) Non-polydimethylsiloxane devices for oxygen-free flow lithography. Nat Commun 3:805

    Google Scholar 

  • Brown E, Forman NA, Orellana CS, Zhang H, Maynor BW, Betts DE, DeSimone JM, Jaeger HM (2010) Generality of shear thickening in dense suspensions. Nat Mater 9(3):220–224

    Google Scholar 

  • Burdick JA, Peterson AJ, Anseth KS (2001) Conversion and temperature profiles during the photoinitiated polymerization of thick orthopaedic biomaterials. Biomaterials 22(13):1779–1786

    Google Scholar 

  • Burdick JA, Khademhosseini A, Langer R (2004) Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20(13):5153–5156

    Google Scholar 

  • Cederquist KB, Dean SL, Keating CD (2010) Encoded anisotropic particles for multiplexed bioanalysis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(6):578–600

    Google Scholar 

  • Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121(1–2):3–9

    Google Scholar 

  • Chapin SC, Appleyard DC, Pregibon DC, Doyle PS (2011) Rapid microRNA profiling on encoded gel microparticles. Angew Chem 123(10):2337–2341

    Google Scholar 

  • Cheah LT, Fritsch I, Haswell SJ, Greenman J (2012) Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications. Biotechnol Bioeng 109(7):1827–1834

    Google Scholar 

  • Chen JH, Cheng CY, Chiu WY, Lee CF, Liang NY (2008) Synthesis of ZnO/polystyrene composites particles by Pickering emulsion polymerization. Eur Polym J 44(10):3271–3279

    Google Scholar 

  • Chen CH, Shah RK, Abate AR, Weitz DA (2009) Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir 25(8):4320

    Google Scholar 

  • Choi C-H, Jung J-H, Hwang T-S, Lee C-S (2009) In situ microfluidic synthesis of monodisperse PEG microspheres. Macromol Res 17(3):163–167

    Google Scholar 

  • Chung CK, Shih TR, Chang CK, Lai CW, Wu BH (2011) Design and experiments of a short-mixing-length baffled microreactor and its application to microfluidic synthesis of nanoparticles. Chem Eng J 168(2):790–798

    Google Scholar 

  • Cowie JMG, Arrighi V (2008) Polymers: chemistry and physics of modern materials. J.M.G. Cowie, Valeria Arrighi. CRC Press, Boca Raton, FL

  • Decker MJ, Halbach CJ, Nam CH, Wagner NJ, Wetzel ED (2007) Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos Sci Technol 67(3–4):565–578

    Google Scholar 

  • Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141(3):320–327

    Google Scholar 

  • Dendukuri D, Doyle PS (2009) The synthesis and assembly of polymeric microparticles using microfluidics. Adv Mater 21(41):4071–4086

    Google Scholar 

  • Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21(6):2113–2116

    Google Scholar 

  • Dendukuri D, Gu SS, Pregibon DC, Hatton TA, Doyle PS (2007) Stop-flow lithography in a microfluidic device. Lab Chip 7(7):818–828

    Google Scholar 

  • Dendukuri D, Panda P, Haghgooie R, Kim JM, Hatton TA, Doyle PS (2008) Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device. Macromolecules 41(22):8547–8556

    Google Scholar 

  • Diao Y, Helgeson ME, Myerson AS, Hatton TA, Doyle PS, Trout BL (2011) Controlled nucleation from solution using polymer microgels. J Am Chem Soc 133(11):3756–3759

    Google Scholar 

  • Dong PF, Xu JH, Zhao H, Luo GS (2013) Preparation of 10 micron scale monodispersed particles by jetting flow in coaxial microfluidic devices. Chem Eng J 214:106–111

    Google Scholar 

  • Duncanson WJ, Lin T, Abate AR, Seiffert S, Shah RK, Weitz DA (2012) Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip 12(12):2135–2145

    Google Scholar 

  • Fouassier JP, Allonas X, Burget D (2003) Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications. Prog Org Coat 47(1):16–36

    Google Scholar 

  • Giridharan V, Yun Y, Hajdu P, Conforti L, Collins B, Jang Y, Sankar J (2012) Microfluidic platforms for evaluation of nanobiomaterials: a review. J Nanomater 2012:14. doi:10.1155/2012/789841

    Google Scholar 

  • Godovsky DY (2000) Device applications of polymer-nanocomposites. In: Biopolymers ·PVA hydrogels, anionic polymerisation nanocomposites, vol 153. Advances in Polymer Science. Springer, Berlin, pp 163–205

  • Gokmen MT, Du Prez FE (2012) Porous polymer particles—a comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci 37(3):365–405

    Google Scholar 

  • Golden J, Justin G, Nasir M, Ligler F (2012) Hydrodynamic focusing—a versatile tool. Anal Bioanal Chem 402(1):325–335

    Google Scholar 

  • Granick S, Jiang S, Chen Q (2009) Janus particles. Phys Today 62(7):68–69

    Google Scholar 

  • Gratton SEA, Pohlhaus PD, Lee J, Guo J, Cho MJ, DeSimone JM (2007) Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT nanoparticles. J Control Release 121(1–2):10–18

    Google Scholar 

  • Gratton SEA, Williams SS, Napier ME, Pohlhaus PD, Zhou Z, Wiles KB, Maynor BW, Shen C, Olafsen T, Samulski ET, DeSimone JM (2008) The pursuit of a scalable nanofabrication platform for use in material and life science applications. Acc Chem Res 41(12):1685–1695

    Google Scholar 

  • Gu H, Duits MHG, Mugele F (2011) Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci 12(4):2572–2597

    Google Scholar 

  • Hassan TA, Rangari VK, Jeelani S (2010) Sonochemical synthesis and rheological properties of shear thickening silica dispersions. Ultrason Sonochem 17(5):947–952

    Google Scholar 

  • Helgeson ME, Chapin SC, Doyle PS (2011) Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science. Curr Opin Colloid Interface Sci 16(2):106–117

    Google Scholar 

  • Hema B, Kumar SA, Dhawan SK (2012) Conducting polymer nanocomposites for anticorrosive and antistatic applications. Nanocompos N Trends Dev. http://dx.doi.org/10.5772/50470

  • Ifkovits JL, Burdick JA (2007) Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13(10):2369–2385

    Google Scholar 

  • Jang J-H, Dendukuri D, Hatton TA, Thomas EL, Doyle PS (2007) A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography. Angew Chem Int Ed 46:9027–9041

    Google Scholar 

  • Jeong W-C, Choi M, Lim CH, Yang S-M (2012a) Microfluidic synthesis of atto-liter scale double emulsions toward ultrafine hollow silica spheres with hierarchical pore networks. Lab Chip 12(24):5262–5271

    Google Scholar 

  • Jeong W-C, Lim J-M, Choi J-H, Kim J-H, Lee Y-J, Kim S-H, Lee G, Kim J-D, Yi G-R, Yang S-M (2012b) Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices. Lab Chip 12(8):1446–1453

    Google Scholar 

  • Jiang S, Granick S (2007) Janus balance of amphiphilic colloidal particles. J Chem Phys 127:161102

    Google Scholar 

  • Kalman D, Wagner N (2009) Microstructure of shear-thickening concentrated suspensions determined by flow-USANS. Rheol Acta 48(8):897–908

    Google Scholar 

  • Kantak C, Zhu Q, Beyer S, Bansal T, Trau D (2012) Utilizing microfluidics to synthesize polyethylene glycol microbeads for Forster resonance energy transfer based glucose sensing. Biomicrofluidics 6(2):022006

    Google Scholar 

  • Kaufmann T, Gokmen MT, Rinnen S, Arlinghaus HF, Du Prez F, Ravoo BJ (2012) Bifunctional Janus beads made by “sandwich” microcontact printing using click chemistry. J Mater Chem 22(13):6190–6199

    Google Scholar 

  • Khan SA, Gunther A, Schmidt MA, Jensen KF (2004) Microfluidic synthesis of colloidal silica. Langmuir 20(20):8604–8611

    Google Scholar 

  • Kim S-H, Jeon S-J, Yi G-R, Heo C-J, Choi JH, Yang S-M (2008) Optofluidic assembly of colloidal photonic crystals with controlled sizes, shapes, and structures. Adv Mater 20(9):1649–1655

    Google Scholar 

  • Kim S-H, Shim JW, Lim J-M, Lee SY, Yang S-M (2009) Microfluidic fabrication of microparticles with structural complexity using photocurable emulsion droplets. New J Phys 11:075014

    Google Scholar 

  • Kim JH, Jeon TY, Choi TM, Shim TS, Kim S-H, Yang S-M (2013) Droplet microfluidics for producing functional microparticles. Langmuir (in press)

  • Koh W-G, Pishko M (2003) Photoreaction injection molding of biomaterial microstructures. Langmuir 19(24):10310–10316

    Google Scholar 

  • Kohane DS (2007) Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 96(2):203–209

    Google Scholar 

  • Kuehne AJC, Weitz DA (2011) Highly monodisperse conjugated polymer particles synthesized with drop-based microfluidics. Chem Commun 47(45):12379–12381

    Google Scholar 

  • Kuijk A, van Blaaderen A, Imhof A (2011) Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J Am Chem Soc 133(8):2346–2349

    Google Scholar 

  • Kumacheva E, Garstecki P (2011) Microfluidic reactors for polymer particles. Wiley, Chichester

    Google Scholar 

  • Langer R, Peppas NA (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 49(12):2990–3006

    Google Scholar 

  • Lattuada M, Hatton TA (2011) Synthesis, properties and applications of Janus nanoparticles. Nano Today 6(3):286–308

    Google Scholar 

  • Lee Y, Wagner N (2003) Dynamic properties of shear thickening colloidal suspensions. Rheol Acta 42(3):199–208

    Google Scholar 

  • Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554

    Google Scholar 

  • Lee MH, Hribar KC, Brugarolas T, Kamat NP, Burdick JA, Lee D (2012) Harnessing interfacial phenomena to program the release properties of hollow microcapsules. Adv Funct Mater 22(1):131–138

    Google Scholar 

  • Li X, Cao HL, Gao S, Pan FY, Weng LQ, Song SH, Huang YD (2008) Preparation of body armour material of Kevlar fabric treated with colloidal silica nanocomposite. Plast, Rubber Compos 37(5–6):223–226

    Google Scholar 

  • Li W, Greener J, Voicu D, Kumacheva E (2009) Multiple modular microfluidic (M3) reactors for the synthesis of polymer particles. Lab Chip 9(18):2715–2721

    Google Scholar 

  • Lin R, Fisher JS, Simon MG, Lee AP (2012) Novel on-demand droplet generation for selective fluid sample extraction. Biomicrofluidics 6(2):024103

    Google Scholar 

  • Litvinov VM, Dias AA (2001) Analysis of network structure of UV-cured acrylates by 1H NMR relaxation, 13C NMR spectroscopy, and dynamic mechanical experiments. Macromolecules 34(12):4051–4060

    Google Scholar 

  • Liu K, Deng Y, Zhang N, Li S, Ding H, Guo F, Liu W, Guo S, Zhao X-Z (2012) Generation of disk-like hydrogel beads for cell encapsulation and manipulation using a droplet-based microfluidic device. Microfluid Nanofluid 13(5):761–767

    Google Scholar 

  • Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Google Scholar 

  • Luo G, Du L, Wang Y, Lu Y, Xu J (2011) Controllable preparation of particles with microfluidics. Particuology 9(6):545–558

    Google Scholar 

  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153

    Google Scholar 

  • Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39(3):1183–1202

    Google Scholar 

  • Mazzitelli S, Capretto L, Carugo D, Zhang X, Piva R, Nastruzzi C (2011) Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications. Lab Chip 11(10):1776–1785

    Google Scholar 

  • McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499

    Google Scholar 

  • Merkel TJ, Herlihy KP, Nunes J, Orgel RM, Rolland JP, DeSimone JM (2010) Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 26(16):13086–13096

    Google Scholar 

  • Merkel TJ, Chen K, Jones SW, Pandya AA, Tian S, Napier ME, Zamboni WE, DeSimone JM (2012) The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles. J Control Release 162(1):37–44

    Google Scholar 

  • Mitragotri S (2009) In drug delivery, shape does matter. Pharm Res 26(1):232–234

    Google Scholar 

  • Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35(1–2):174–211

    Google Scholar 

  • Mulligan M, Rothstein J (2012) Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries. Microfluid Nanofluid 13(1):65–73

    Google Scholar 

  • Neethirajan S, Kobayashi I, Nakajima M, Wu D, Nandagopal S, Lin F (2011) Microfluidics for food, agriculture and biosystems industries. Lab Chip 11(9):1574–1586

    Google Scholar 

  • Negrete-Herrera N, Putaux J-L, Bourgeat-Lami E (2006) Synthesis of polymer/laponite nanocomposite latex particles via emulsion polymerization using silylated and cation-exchanged Laponite clay platelets. Prog Solid State Chem 34(2–4):121–137

    Google Scholar 

  • Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314

    Google Scholar 

  • Nunes J, Herlihy KP, Mair L, Superfine R, DeSimone JM (2010) Multifunctional shape and size specific magneto-polymer composite particles. Nano Lett 10(4):1113–1119

    Google Scholar 

  • Panda P, Ali S, Lo E, Chung BG, Hatton TA, Khademhosseini A, Doyle PS (2008) Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8(7):1056–1061

    Google Scholar 

  • Park JI, Saffari A, Kumar S, Gunnther A, Kumacheva E (2010) Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res 40:415–443

    Google Scholar 

  • Pawar AB, Kretzschmar I (2010) Fabrication, assembly, and application of patchy particles. Macromol Rapid Commun 31(2):150–168

    Google Scholar 

  • Pregibon DC, Toner M, Doyle PS (2006) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315(5817):1393–1396. doi:10.1126/science.1134929

    Google Scholar 

  • Qiang W, Wang Y, He P, Xu H, Gu H, Shi D (2008) Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization. Langmuir 24(3):606–608

    Google Scholar 

  • Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5(3):491–502

    Google Scholar 

  • Raghavan SR, Khan SA (1997) Shear-thickening response of fumed silica suspensions under steady and oscillatory shear. J Colloid Interface Sci 185(1):57–67

    Google Scholar 

  • Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127(28):10096–10100

    Google Scholar 

  • Rotem A, Abate AR, Utada AS, Van Steijn V, Weitz DA (2012) Drop formation in non-planar microfluidic devices. Lab Chip 12(21):4263–4268

    Google Scholar 

  • Santos-Martinez MJ, Prina-Mello A, Medina C, Radomski MW (2011) Analysis of platelet function: role of microfluidics and nanodevices. Analyst 136(24):5120–5126

    Google Scholar 

  • Seiffert S, Weitz DA (2010) Microfluidic fabrication of smart microgels from macromolecular precursors. Polymer 51(25):5883–5889

    Google Scholar 

  • Seiffert S, Romanowsky MB, Weitz DA (2010) Janus Microgels produced from functional precursor polymers. Langmuir 26(18):14842–14847

    Google Scholar 

  • Serra CA, Chang Z (2008) Microfluidic-assisted synthesis of polymer particles. Chem Eng Technol 31(8):1099–1115

    Google Scholar 

  • Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu L-Y, Kim J-W, Fernandez-Nieves A, Martinez CJ, Weitz DA (2008) Designer emulsions using microfluidics. Mater Today 11(4):18–27

    Google Scholar 

  • Shepherd RF, Conrad JC, Rhodes SK, Link DR, Marquez M, Weitz DA, Lewis JA (2006) Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. Langmuir 22(21):8618–8622

    Google Scholar 

  • Shepherd RF, Panda P, Bao Z, Sandhage KH, Hatton TA, Lewis JA, Doyle PS (2008) Stop-flow lithography of colloidal, glass, and silicon microcomponents. Adv Mater 20(24):4734–4739

    Google Scholar 

  • Shim TS, Kim S-H, Yang S-M (2013) Elaborate design strategies toward novel microcarriers for controlled encapsulation and release. Part Part Syst Charact 30(1):9–45

    Google Scholar 

  • Shum HC, Abate AR, Lee D, Studart AR, Wang B, Chen CH, Thiele J, Shah RK, Krummel A, Weitz DA (2010) Droplet microfluidics for fabrication of non-spherical particles. Macromol Rapid Commun 31(2):108–118

    Google Scholar 

  • Singh A, Sharma P, Garg V, Garg G (2010) Hydrogel: a review. Int J Pharm Sci Rev Res 4(2):016

    Google Scholar 

  • Solomon MJ, Zeitoun R, Ortiz D, Sung KE, Deng D, Shah A, Burns MA, Glotzer SC, Millunchick JM (2010) Toward assembly of non-close-packed colloidal structures from anisotropic pentamer particles. Macromol Rapid Commun 31(2):196–201

    Google Scholar 

  • Song Y, Modrow H, Henry LL, Saw CK, Doomes EE, Palshin V, Hormes J, Kumar CSSR (2006) Microfluidic synthesis of cobalt nanoparticles. Chem Mater 18(12):2817–2827

    Google Scholar 

  • Suh SK, Chapin SC, Hatton TA, Doyle PS (2012) Synthesis of magnetic hydrogel microparticles for bioassays and tweezer manipulation in microwells. Microfluid Nanofluid 13(4):665–674

    Google Scholar 

  • Tan J, Shah S, Thomas A, Ou-Yang HD, Liu Y (2012) The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid Nanofluid 14(1–2):1–11

    Google Scholar 

  • Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325

    Google Scholar 

  • Tao L, Hu W, Liu Y, Huang G, Sumer B, Gao J (2011) Shape-specific nanomedicine: emerging opportunities and challenges. Exp Biol Med 236:20–29

    Google Scholar 

  • Trietsch SJ, Hankemeier T, van der Linden HJ (2011) Lab-on-a-chip technologies for massive parallel data generation in the life sciences: a review. Chemometr Intell Lab Syst 108(1):64–75

    Google Scholar 

  • Utada AS, Chu LY, Fernandez-Nieves A, Link DR, Holtze C, Weitz DA (2007) Dripping, jetting, drops, and wetting: the magic of microfluidics. MRS Bull 32(09):702–708

    Google Scholar 

  • Wacker JB, Lignos I, Parashar VK, Gijs MAM (2012) Controlled synthesis of fluorescent silica nanoparticles inside microfluidic droplets. Lab Chip 12(17):3111–3116

    Google Scholar 

  • Wan J (2012) Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery. Polymers 4(2):1084–1108

    Google Scholar 

  • Wang J, Zhang J, Han J (2010) Synthesis of crystals and particles by crystallization and polymerization in droplet-based microfluidic devices. Front Chem Eng China 4(1):26–36

    Google Scholar 

  • Wassen S, Rondeau E, Sott K, Loren N, Fischer P, Hermansson A-M (2012) Microfluidic production of monodisperse biopolymer particles with reproducible morphology by kinetic control. Food Hydrocoll 28(1):20–27

    Google Scholar 

  • Weng SB, Kim IT, Qin D, Xia Y, Whitesides GM (1999) Formation of patterned microstructures of conducting polymers by soft lithography, and applications in microelectronic device fabrication. Adv Mater 11(12):1038–1041

    Google Scholar 

  • Wu Y, Joseph S, Aluru NR (2009) Effect of cross-linking on the diffusion of water, ions, and small molecules in hydrogels. J Phys Chem B 113(11):3512–3520

    Google Scholar 

  • Wurm F, Kilbinger AFM (2009) Polymeric Janus particles. Angew Chem Int Ed 48(45):8412–8421

    Google Scholar 

  • Xia Y, Rogers JA, Paul KE, Whitesides GM (1999) Unconventional methods for fabricating and patterning nanostructures. Chem Rev 99(7):1823–1848

    Google Scholar 

  • Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed 44(5):724–728

    Google Scholar 

  • Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluid 9(1):1–16

    Google Scholar 

  • Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418

    Google Scholar 

  • Yamagami T, Tanaka T, Suzuki T, Okubo M (2013) Preparation of hemispherical polymer particles via phase separation induced by microsuspension polymerization. Coll Polym Sci 291(1):71–76

    Google Scholar 

  • Yang S-M, Kim S-H, Lim J-M, Yi G-R (2008) Synthesis and assembly of structured colloidal particles. J Mater Chem 18(19):2177–2190

    Google Scholar 

  • Yang S-Y, Cheng F-Y, Yeh C-S, Lee G-B (2010) Size-controlled synthesis of gold nanoparticles using a micro-mixing system. Microfluid Nanofluid 8(3):303–311

    Google Scholar 

  • Yang S, Guo F, Kiraly B, Mao X, Lu M, Leong KW, Huang TJ (2012) Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab Chip 12(12):2097–2102

    Google Scholar 

  • Yin Y, Xia Y (2001) Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures. Adv Mater 13(4):267–271

    Google Scholar 

  • Yuet KP, Hwang DK, Haghgooie R, Doyle PS (2009) Multifunctional superparamagnetic Janus particles. Langmuir 26(6):4281–4287

    Google Scholar 

  • Zeng S, Liu X, Xie H, Lin B (2011) Basic technologies for droplet microfluidics. In: Microfluidics, vol 304. Topics in Current Chemistry. Springer, Berlin, pp 69–90

  • Zhang Q, Lin B, Qin J (2012) Synthesis of shape-controlled particles based on synergistic effect of geometry confinement, double emulsion template, and polymerization quenching. Microfluid Nanofluid 12(1–4):33–39

    Google Scholar 

  • Zhao C-X, He L, Qiao SZ, Middelberg APJ (2011) Nanoparticle synthesis in microreactors. Chem Eng Sci 66(7):1463–1479

    Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy under award number DE-SC0002470 and by the National Science Foundation under award number DMR-0611612. David Baah gratefully acknowledges a graduate fellowship from Alabama EPSCoR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Floyd-Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baah, D., Floyd-Smith, T. Microfluidics for particle synthesis from photocrosslinkable materials. Microfluid Nanofluid 17, 431–455 (2014). https://doi.org/10.1007/s10404-014-1333-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1333-y

Keywords