[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In the Zhouqu region (Gansu, China), landslide distribution and activity exploits geological weaknesses in the fault-controlled belt of low-grade metamorphic rocks of the Bailong valley and severely impacts lives and livelihoods in this region. Landslides reactivated by the Wenchuan 2008 earthquake and debris flows triggered by rainfall, such as the 2010 Zhouqu debris flow, have caused more than 1700 casualties and estimated economic losses of some US$0.4 billion. Earthflows presently cover some 79% of the total landslide area and have exerted a strong influence on landscape dynamics and evolution in this region. In this study, we use multi-temporal Advanced Land Observing Satellite and Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) data and time series interferometric synthetic aperture radar to investigate slow-moving landslides in a mountainous region with steep topography for the period December 2007–August 2010 using the Small Baseline Subsets (SBAS) technique. This enabled the identification of 11 active earthflows, 19 active landslides with deformation rates exceeding 100 mm/year and 20 new instabilities added into the pre-existing landslide inventory map. The activity of these earthflows and landslides exhibits seasonal variations and accelerated deformation following the Wenchuan earthquake. Time series analysis of the Suoertou earthflow reveals that seasonal velocity changes are characterized by comparatively rapid acceleration and gradual deceleration with distinct kinematic zones with different mean velocities, although velocity changes appear to occur synchronously along the landslide body over seasonal timescales. The observations suggest that the post-seismic effects (acceleration period) on landslide deformation last some 6–7 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agliardi F, Crosta GB, Frattini P, Malusà MG (2013) Giant non-catastrophic landslides and the long-term exhumation of the European Alps. Earth Planet Sci Lett 365:263–274. https://doi.org/10.1016/j.epsl.2013.01.030

    Article  Google Scholar 

  • Bai S, Wang J, Zhang Z, Cheng C (2012) Combined landslide susceptibility mapping after Wenchuan earthquake at the Zhouqu segment in the Bailongjiang Basin, China. Catena 99:18–25. https://doi.org/10.1016/j.catena.2012.06.012

    Article  Google Scholar 

  • Bai S, Xu Q, Wang J, Zhou P (2013) Pre-conditioning factors and susceptibility assessments of Wenchuan earthquake landslide at the Zhouqu segment of Bailongjiang basin, China. J Geol Soc India 82(5):575–582. https://doi.org/10.1007/s12594-013-0190-8

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383. https://doi.org/10.1109/TGRS.2002.803792

    Article  Google Scholar 

  • Bi Y, Tang Y, Zhang M, Feng W, Li F (2016) Review of regional tectonics of Longnan. Open J Nat Sci 4(2):137–144 (in Chinese). https://doi.org/10.12677/OJNS.2016.42017

    Article  Google Scholar 

  • Bonì R, Pilla G, Meisina C (2016) Methodology for detection and interpretation of ground motion areas with the A-DInSAR time series analysis. Remote Sens 8(8):686

    Article  Google Scholar 

  • Bouali EH, Oommen T, Escobar-Wolf R (2017) Mapping of slow landslides on the Palos Verdes Peninsula using the California landslide inventory and persistent scatterer interferometry. Landslides 9:1–14

    Google Scholar 

  • Burbank DW, Anderson RS (1985) Tectonic geomorphology. J Geol Educ 32:193–205

    Google Scholar 

  • Bürgmann R, Rosen PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation. Annu Rev Earth Planet Sci 28(1):169–209. https://doi.org/10.1146/annurev.earth.28.1.169

    Article  Google Scholar 

  • Calvello M, Peduto D, Arena L (2017) Combined use of statistical and DInSAR data analyses to define the state of activity of slow-moving landslides. Landslides 14(2):473–489

    Article  Google Scholar 

  • Chen F, Lin H, Zhou W, Hong T, Wang G (2013) Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sens Environ 138:10–18

    Article  Google Scholar 

  • Chen G, Meng X, Tan L, Zhang F, Qiao L (2014) Comparison and combination of different models for optimal landslide susceptibility zonation. Q J Eng Geol Hydrogeol 47(4):283–306

    Article  Google Scholar 

  • Cigna F, Bianchini S, Casagli N (2013) How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): the PSI-based matrix approach. Landslides 10(3):267–283

    Article  Google Scholar 

  • Cigna F, Bateson LB, Jordan CJ, Dashwood C (2014) Simulating SAR geometric distortions and predicting persistent scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of great Britain with SAR imagery. Remote Sens Environ 152:441–466. https://doi.org/10.1016/j.rse.2014.06.025

    Article  Google Scholar 

  • Colesanti C, Wasowski J (2006) Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Eng Geol 88(3):173–199. https://doi.org/10.1016/j.enggeo.2006.09.013

    Article  Google Scholar 

  • Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sens 36(3):813–821. https://doi.org/10.1109/36.673674

    Article  Google Scholar 

  • Crosta G, Frattini P, Agliardi F (2013) Deep seated gravitational slope deformations in the European Alps. Tectonophysics 605:13–33

    Article  Google Scholar 

  • Cui P, Zhou GG, Zhu X, Zhang J (2013) Scale amplification of natural debris flows caused by cascading landslide dam failures. Geomorphology 182:173–189. https://doi.org/10.1016/j.geomorph.2012.11.009

    Article  Google Scholar 

  • Del Soldato M, Bianchini S, Calcaterra D, De Vita P, Di Martire D, Tomás R, Casagli N (2017) A new approach for landslide-induced damage assessment. Geomat Nat Haz Risk 8(2):1524–1537. https://doi.org/10.1080/19475705.2017.1347896

    Article  Google Scholar 

  • Dewey JF, Burke KC (1973) Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision. J Geol 81(6):683–692. https://doi.org/10.1086/627920

    Article  Google Scholar 

  • Dijkstra, et al. (2012) Geomorphic controls and debris flows—the 2010 Zhouqu disaster, China. In: Proceedings of the 11th international symposium on landslides (ISL) and the 2nd North American Symposium on Landslides

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038. https://doi.org/10.1029/1998GL900033

    Article  Google Scholar 

  • Handwerger AL, Roering JJ, Schmidt DA, Rempel AW (2015) Kinematics of earthflows in the Northern California Coast Ranges using satellite interferometry. Geomorphology 246:321–333. https://doi.org/10.1016/j.geomorph.2015.06.003

    Article  Google Scholar 

  • Hanssen RF (2001) Radar interferometry: data interpretation and error analysis, vol 2. Springer Sci & Business Media. https://doi.org/10.1007/0-306-47633-9

  • Herrera G, Gutiérrez F, García-Davalillo JC, Guerrero J, Notti D, Galve JP, Fernández-Merodo JA, Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens Environ 128(1):31–43. https://doi.org/10.1016/j.rse.2012.09.020

    Article  Google Scholar 

  • Huang R, Li WL (2009) Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China. Bull Eng Geol Environ 68(3):363–371. https://doi.org/10.1007/s10064-009-0207-0

    Article  Google Scholar 

  • Huang X, Yang W, Zhang C, Shen J, Liu T (2013) The formation mechanism of Suoertou landslide in Pingding-Huama fault zone, Southern Gansu. Geol Bull Chin 32(12):1936–1942 (in Chinese)

    Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194

    Article  Google Scholar 

  • Jiang S, Wen BP, Zhao C, Li RD, Li ZH (2016) Kinematics of a giant slow-moving landslide in Northwest China: constraints from high resolution remote sensing imagery and GPS monitoring. J Asian Earth Sci 123:34–46. https://doi.org/10.1016/j.jseaes.2016.03.019

    Article  Google Scholar 

  • Kirby E, Harkins N (2013) Distributed deformation around the eastern tip of the Kunlun fault. Int J Earth Sci 102(7):1759–1772. https://doi.org/10.1007/s00531-013-0872-x

    Article  Google Scholar 

  • Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120(1):77–90. https://doi.org/10.1016/j.geomorph.2009.09.017

    Article  Google Scholar 

  • Malet JP, Laigle D, Remaître A, Maquaire O (2005) Triggering conditions and mobility of debris flows associated to complex earthflows. Geomorphology 66(1):215–235. https://doi.org/10.1016/j.geomorph.2004.09.014

    Article  Google Scholar 

  • Mansour MF, Morgenstern NR, Martin CD (2011) Expected damage from displacement of slow-moving slides. Landslides 8(1):117–131. https://doi.org/10.1007/s10346-010-0227-7

    Article  Google Scholar 

  • Meisina C, Zucca F, Notti D, Colombo A, Cucchi A, Savio G, Giannico C, Bianchi M (2008) Geological interpretation of PSInSAR data at regional scale. Sensors 8(11):7469–7492. https://doi.org/10.3390/s8117469

    Article  Google Scholar 

  • Meng XM, Chen G, Guo P, Xiong MQ, Wasowski J (2013) Research of landslides and debris flows in Bailong River Basin: progress and prospect. Mar Geol Quat Geol 33(4):1–15 (in Chinese). https://doi.org/10.3724/SP.J.1140.2013.04001

    Article  Google Scholar 

  • Molnar P, Stock JM (2009) Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics 28(3). https://doi.org/10.1029/2008TC002271

  • Necsoiu M, McGinnis RN, Hooper DM (2014) New insights on the Salmon Falls Creek Canyon landslide complex based on geomorphological analysis and multitemporal satellite InSAR techniques. Landslides 11(6):1141–1153. https://doi.org/10.1007/s10346-014-0523-8

    Article  Google Scholar 

  • Notti D, Davalillo J, Herrera G, Mora O (2010) Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat Hazards Earth Syst Sci 10(9):1865–1875. https://doi.org/10.5194/nhess-10-1865-2010

    Article  Google Scholar 

  • Notti D, Herrera G, Bianchini S, Meisina C, García-Davalillo JC, Zucca F (2014) A methodology for improving landslide PSI data analysis. Int J Remote Sens 35(6):2186–2214

    Google Scholar 

  • Novellino A, Cigna F, Brahmi M, Sowter A, Bateson L, Marsh S (2017) Assessing the feasibility of a national InSAR ground deformation map of Great Britain with Sentinel-1. Geosciences 7(19):1–14

    Google Scholar 

  • Osmanoğlu B, Sunar F, Wdowinski S, Cabral-Cano E (2016) Time series analysis of InSAR data: methods and trends. ISPRS J Photogramm 115:90–102. https://doi.org/10.1016/j.isprsjprs.2015.10.003

    Article  Google Scholar 

  • Pepe A, Lanari R (2006) On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans Geosci Remote Sens 44(9):2374–2383. https://doi.org/10.1109/TGRS.2006.873207

    Article  Google Scholar 

  • Sarmap (2005) http://www.sarmap.ch/

  • Scheidegger A, Ai N (1987) Clay slides and debris flow in Wudu region. J Soil Water Conserv 1(2):19–27

    Google Scholar 

  • Schlögel R, Doubre C, Malet J-P, Masson F (2015) Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorphology 231:314–330. https://doi.org/10.1016/j.geomorph.2014.11.031

    Article  Google Scholar 

  • Schlögel R, Malet J-P, Doubre C, Lebourg T (2016) Structural control on the kinematics of the deep-seated la Clapière landslide revealed by L-band InSAR observations. Landslides 13(5):1005–1018. https://doi.org/10.1007/s10346-015-0623-0

    Article  Google Scholar 

  • Schuster RL, Highland LM (2007) The Third Hans Cloos Lecture. Urban landslides: socioeconomic impacts and overview of mitigative strategies. Bull Eng Geol Environ 66(1):1–27. https://doi.org/10.1007/s10064-006-0080-z

    Article  Google Scholar 

  • Stimely LL (2009) Characterizing landslide movement at the Boulder Creek Earthflow, Northern California, using L-band InSAR (Doctoral dissertation, University of Oregon)

  • Sun Q, Zhang L, Ding X, Hu J, Li Z, Zhu J (2015) Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sens Environ 156:45–57. https://doi.org/10.1016/j.rse.2014.09.029

    Article  Google Scholar 

  • Tang C, Zhu J, Qi X, Ding J (2011) Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: a case study in the Beichuan area of China. Eng Geol 122(1):22–33. https://doi.org/10.1016/j.enggeo.2011.03.013

    Article  Google Scholar 

  • Teshebaeva K, Roessner S, Echtler H, Motagh M, Wetzel H-U, Molodbekov B (2015) ALOS/PALSAR InSAR time-series analysis for detecting very slow-moving landslides in Southern Kyrgyzstan. Remote Sens 7(7):8973–8994. https://doi.org/10.3390/rs70708973

    Article  Google Scholar 

  • Tomás R, Li Z, Lopez-Sanchez JM, Liu P, Singleton A (2016) Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide. Landslides 13(3):437–450

    Article  Google Scholar 

  • Travelletti J, Malet JP, Delacourt C (2014) Image-based correlation of laser scanning point cloud time series for landslide monitoring. Int J Appl Earth Obs Geoinf 32:1–18. https://doi.org/10.1016/j.jag.2014.03.022

    Article  Google Scholar 

  • Van Asch TW, Van Beek LPH, Bogaard TA (2007) Problems in predicting the mobility of slow-moving landslides. Eng Geol 91(1):46–55. https://doi.org/10.1016/j.enggeo.2006.12.012

    Article  Google Scholar 

  • Van Der Woerd J, Tapponnier P, Ryerson FJ et al (2002) Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophys J Int 148(3):356–388. https://doi.org/10.1046/j.1365-246x.2002.01556.x

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. Trans Res Board Spec Rep 176:11–33

    Google Scholar 

  • Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138. https://doi.org/10.1016/j.enggeo.2014.03.003

    Article  Google Scholar 

  • Wasowski J, Bovenga F, Dijkstra T, Meng X, Nutricato R, Chiaradia MT (2014) Persistent scatterers interferometry provides insight on slope deformations and landslide activity in the mountains of Zhouqu, Gansu, China. In: Landslide science for a safer geoenvironment Springer, pp 359–364. https://doi.org/10.1007/978-3-319-05050-8_56

  • Xiong M, Meng X, Wang S, Guo P, Li Y, Chen G, Qing F, Cui Z, Zhao Y (2016) Effectiveness of debris flow mitigation strategies in mountainous regions. Prog Phys Geogr 40(6):768–793

    Article  Google Scholar 

  • Yang WM, Huang X, Zhang YS, Liu T (2013) The deformation characteristics of the landslide along Pingding-Huama active fault zone and its prevention and control. Geol Bull Chin 32(12):1925–1935 (in Chinese)

    Google Scholar 

  • Yin Y, Wang F, Sun P (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 6(2):139–152

    Article  Google Scholar 

  • Yu JX, Zheng WJ, Yuan DY, Pang JZ, Liu XW, Liu BY (2012) Late quaternary active chatacteristics and slip-rate of Pingding-Huama fault, the eastern segment of Guanggaishan-Diesan fault zone (west Qingling mountain). Quat Sci 32(5):957–967 (in Chinese)

    Google Scholar 

  • Yu G, Zhang M, Cong K, Pei L (2015) Critical rainfall thresholds for debris flows in Sanyanyu, Zhouqu County, Gansu Province, China. Q J Eng Geol Hydrogeol 48(3–4):224–233. https://doi.org/10.1144/qjegh2014-078

    Article  Google Scholar 

  • Zhang Y, Meng XM, Chen G, Qiao L, Zeng R, Chang J (2016) Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides 13(5):1273–1284

    Article  Google Scholar 

  • Zhao CY, Lu Z, Zhang Q, de la Fuente J (2012) Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens Environ 124:348–359

    Article  Google Scholar 

  • Zhao R, Li ZW, Feng GC, Wang QJ, Hu J (2016) Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: with emphasis on climatic factors modeling. Remote Sens Environ 184:276–287. https://doi.org/10.1016/j.rse.2016.07.019

    Article  Google Scholar 

  • Zheng WJ, Liu XW, Yu JX, Yuan DY, Zhang PZ, Ge WP, Pang JZ, Liu BY (2016) Geometry and late Pleistocene slip rates of the Liangdang-Jiangluo fault in the western Qinling mountains, NW China. Tectonophysics 687:1–13

    Article  Google Scholar 

Download references

Acknowledgements

The ALOS PLSAR images were provided by the Japan Aerospace Exploration Agency (JAXA). The authors would like to acknowledge V. Banks from BGS for her valuable suggestions to improve the quality of the paper. Colm Jordan, Tom Dijkstra, and Alessandro Novellino publish with permission from the Executive Director of the British Geological Survey, funded by the BGS-NERC ODA Programme.

Funding

This study was supported by the Key Technology Research and Development Program of the Ministry of Gansu Province, China (Grant No. 1604FKCA098), the National Natural Science Foundation of China (Grant No. 41661144046), and the National Natural Science Foundation of China (NSFC41702292). This research builds upon initial funding from an Urgency Grant awarded by the Natural Environment Research Council (UK; NE/I016279) and support from the National Natural Science Foundation of China (NSFC 41040005; NSFC41021091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingmin Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Meng, X., Jordan, C. et al. Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series. Landslides 15, 1299–1315 (2018). https://doi.org/10.1007/s10346-018-0954-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-018-0954-8

Keywords