[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Human-induced coastal landslide reactivation. Monitoring by PSInSAR techniques and urban damage survey (SE Spain)

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In the present work, we show the case of Marina del Este resort, located in the southern Mediterranean coast of Spain (Costa del Sol). A medium-scale landslide has been recognized when the area was virgin. In 1977 started the initial works for urbanizing the area; later, buildings and facilities expanded uphill covering the landslide body. This case is characterized by a long history of corrective drainage and mitigate measures without success. An analysis of the landslide activity has been carried out by applying different approaches and based on the combination of the following: (1) geomorphological analysis, (2) PSInSAR technique application (ENVISAT 2003–2009), (3) an assessment of building and infrastructure damages, (4) rainfall time series analysis and (5) ground monitoring (2010–2011) data interpretation. Results show that, from 2003 to 2009, the landslide was active with velocities ranging from 5 to 15 mm/year. During the exceptional rainy period in winter 2009–2010, the movement velocity increased about ten times (velocities ranging from 40 to 90 mm/year) causing widespread damages in the resort. Buildings with high degree of damage are located at the toe of the landslide, close to the marina, where some dwellings have been evacuated. Marina del Este is a good example to show that landslides on coastal and steep slope areas are very vulnerable to reactivations and require thorough studies before any anthropic modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • AYESA (2011) Proyecto constructivo de mediada de estabilización del deslizamiento de la ladera de Punta de la Mona, Almuñécar, Granada. Internal report unpublished (in Spanish)

  • Azañón JM, Alonso-Chaves FM (1996) Alpine tectono-metamorphic evolution of the Tejeda unit, an extensionally dismembered Alpujarride Nappe (Western Betics). Comptes rendus de l’Académie des sciences. Série 2. Sci de la terre et des planètes 322(1):47–54

    Google Scholar 

  • Azañón JM, Garcia-Dueñas V, Martinez-Martinez JM, Crespo-Blanc A (1994) Alpujarride tectonic sheets in the central Betics and similar eastern allochthonous units (SE Spain). Comptes rendus de l’Académie des sciences. Série 2. Sci de la terre et des planètes 318(5):667–674

    Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential interferograms. Geosci Rem Sens IEEE Trans 40(11):2375–2383

    Article  Google Scholar 

  • Bianchini S, Pratesi F, Nolesini T, Casagli N (2015) building deformation assessment by means of persistent scatterer interferometry analysis on a landslide-affected area: the Volterra (Italy) case study. Remote Sens 7(4):4678–4701

    Article  Google Scholar 

  • Blanco-Sanchez P, Mallorquí JJ, Duque S, Monells D (2008) The coherent pixels technique (CPT): an advanced DInSAR technique for non-linear deformation monitoring. Pure Appl Geophys 165(6):1167–1193

    Article  Google Scholar 

  • Bru G, Herrera G, Tomás R, Duro J, De la Vega R, Mulas J (2013) Control of deformation of buildings affected by subsidence using persistent scatterer interferometry. Struct Infrastruct Eng 9(2):188–200

    Google Scholar 

  • Calò F, Ardizzone F, Castaldo R, Lollino P, Tizzani P, Guzzetti F, Manunta M (2014) Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy. Remote Sens Environ 142:69–82

    Article  Google Scholar 

  • Cardinali M, Galli M, Guzzetti F, Ardizzone F, Bartoccini P, Reichenbach P (2006) Rainfall induced landslides in December 2004 in Southwestern Umbria, Central Italy. Nat Hazard Earth Sys Sci 6:237–260

    Article  Google Scholar 

  • Cascini L, Bonnard C, Coromina J, Jibson R, Montero-Olart J (2005) Landslide hazard and risk zoning for urban planning and development. Landslide risk management. Taylor and Francis, London, pp 199–235

    Google Scholar 

  • Ciampalini A, Bardi F, Bianchini S, Frodella W, Del Ventisette C, Moretti S, Casagli N (2014) Analysis of building deformation in landslide area using multisensor PSInSAR™ technique. Int J Appl Earth Observ Geoinform 33:166–180

    Article  Google Scholar 

  • Cigna F, Del Ventisette C, Liguori V, Casagli N (2010) InSAR time-series analysis for management and mitigation of geological risk in urban area. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 I.E. International (pp. 1924–1927) IEEE

  • Cigna F, Bianchini S, Casagli N (2013) How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides 10(3):267–283

    Article  Google Scholar 

  • Cooper AH (2008) The classification, recording, databasing and use of information about building damage caused by subsidence and landslides. Q J Eng Geol Hydrogeol 41(3):409–424

    Article  Google Scholar 

  • Crosetto M, Tscherning C, Crippa B, Castillo M (2002) Subsidence monitoring using SAR interferometry: reduction of the atmospheric effects using stochastic filtering. Geophys Res Lett 29(9):26–1

    Google Scholar 

  • Crosetto M, Monserrat O, Cuevas M, Crippa B (2011) Spaceborne differential SAR interferometry: data analysis tools for deformation measurement. Remote Sens 2011(3):305–318

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, Transportation Research Board Special Report 247. National Academy Press, WA, pp 36–75

    Google Scholar 

  • Del Ventisette C, Ciampalini A, Manunta M, Calò F, Paglia L, Ardizzone F, Guzzetti F (2013) Exploitation of large archives of ERS and ENVISAT C-band SAR data to characterize ground deformations. Remote Sens 5(8):3896–3917

    Article  Google Scholar 

  • Devanthéry N, Crosetto M, Monserrat O, Cuevas-González M, Crippa B (2014) An approach to persistent scatterer interferometry. Remote Sens 6(7):6662–6679

    Article  Google Scholar 

  • Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88(3):200–217

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. Geosci Rem Sens, IEEE Trans 39(1):8–20

    Article  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: squeeSAR. Geosci Rem Sens, IEEE Trans 49(9):3460–3470

    Article  Google Scholar 

  • Galve JP, Castañeda C, Gutiérrez F, Herrera G (2014) Assessing sinkhole activity in the Ebro Valley mantled evaporite karst using advanced DInSAR. Geomorphology 229:30–44

    Article  Google Scholar 

  • Herrera G, Notti D, García-Davalill JC, Mora O, Cooksley G, Sánchez M, Crosetto M (2011) Analysis with C-and X-band satellite SAR data of the Portalet landslide area. Landslides 8(2):195–206

    Article  Google Scholar 

  • Irigaray C, Lamas F, El Hamdouni R, Fernández T, Chacón J (2000) The importance of the precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat Hazards 21(1):65–81

    Article  Google Scholar 

  • Lu P, Catani F, Tofani V, Casagli N (2014) Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides 11(4):685–696

    Article  Google Scholar 

  • Meisina C, Zucca F, Notti D, Colombo A, Cucchi A, Savio G, Bianchi M (2008) Geological interpretation of PSInSAR data at regional scale. Sensors 8(11):7469–7492

    Article  Google Scholar 

  • Mora O, Mallorqui JJ, Broquetas A (2003) Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens 41(10):2243–2253

    Article  Google Scholar 

  • Olcina Cantos J (2009) Cambio climático y riesgos climáticos en España. (in Spanish)

  • Vicente-Serrano SM, Trigo RM, López-Moreno JI, Liberato ML, Lorenzo-Lacruz J, Beguería S, El Kenawy AM (2011) Extreme winter precipitation in the Iberian Peninsula in 2010: anomalies, driving mechanisms and future projections. Clim Res 46:51–65

    Article  Google Scholar 

  • Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: current issues and future perspectives. Eng Geol 174:103–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Miguel Azañón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notti, D., Galve, J.P., Mateos, R.M. et al. Human-induced coastal landslide reactivation. Monitoring by PSInSAR techniques and urban damage survey (SE Spain). Landslides 12, 1007–1014 (2015). https://doi.org/10.1007/s10346-015-0612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0612-3

Keywords