[go: up one dir, main page]

Skip to main content
Log in

Methyl jasmonate improves radical generation in macrophyte phytoremediation

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Phytoremediation is the use of plants to decontaminate and improve waters and soils. Pleustonic macrophytes are plant models for research in waters. In a phytoremediation study, the elicitation of Pistia stratiotes with methyl jasmonate or salicylic acid suggests that oxytetracycline modification rate coefficients could be increased more than threefold. Here we present the elicitation of Pistia stratiotes apical primary root tips. We detected reactive oxygen species generation by X-band electron paramagnetic resonance spectroscopy, using the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN). Elicitation using 0.8 mM methyl jasmonate during 1 h increased the relative spin-trapped radical concentration by +12 %. Further, results indicate acute plant toxicity above 0.24 mM salicylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abbasi T et al (2015) Biomimetic synthesis of nanoparticles using aqueous extracts of plants (Botanical Species). J Nano Res 31:138–202. doi:10.4028/www.scientific.net/JNanoR.31

    Article  CAS  Google Scholar 

  • Antoniou C et al (2016) Unravelling chemical priming machinery in plants: the role of reactive oxygen–nitrogen–sulfur species in abiotic stress tolerance enhancement. Curr Opin Plant Biol 33:101–107. doi:10.1016/j.pbi.2016.06.020

    Article  CAS  Google Scholar 

  • Brain R et al (2006) Probabilistic ecological hazard assessment: evaluating pharmaceutical effects on aquatic higher plants as an example. Ecotox Environ Safety 64:128–135. doi:10.1016/j.ecoenv.2005.08.007

    Article  CAS  Google Scholar 

  • Brodersen P et al (2005) The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol 138:1037–1045. doi:10.1104/pp.105.059303

    Article  CAS  Google Scholar 

  • Buchanan B et al (2015) Biochem and mol biol of plants. Wiley, Hoboken

    Google Scholar 

  • Bunel V et al (2014) Methods applied to the in vitro primary toxicology testing of natural products: state of the art, strengths, and limits. Planta Med 80:1210–1226. doi:10.1055/s-0033-1360273

    Article  CAS  Google Scholar 

  • Buxton G et al (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (∙OH/∙ O–in aqueous solution. J Phys Chem Ref Data 17:513–886. doi:10.1063/1.555805

    Article  CAS  Google Scholar 

  • Cheng J, Stomp A (2009) Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean Soil Air Water 37:17–26. doi:10.1002/clen.200800210

    Article  CAS  Google Scholar 

  • Del-Claro K, Oliveira PS, Rico-Gray V (eds) (2009) Tropical biology and conservation management—volume IV: botany encyclopedia of tropical biology and conservation management. UNESCO/EOLSS, Paris

    Google Scholar 

  • Doran P (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76. doi:10.1002/bit.22280

    Article  CAS  Google Scholar 

  • Duan Y et al (2010) An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol 186:681–695. doi:10.1111/j.1469-8137.2010.03207.x

    Article  CAS  Google Scholar 

  • EasySpin 4.0.0, 4.5.1, 5.0.16. http://www.easyspin.org/. Accessed 18 Mar 2012, 2 Aug 2013, 25 Jan 2015

  • Eaton G, Eaton S, Salikhov K (eds) (1998) Foundations of modern EPR. World Scientific, Singapore. River Edge. ISBN 9810232950

  • Engelhardt K, Ritchie M (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411:687–689. doi:10.1038/35079573

    Article  CAS  Google Scholar 

  • Fariduddin Q et al (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281–284. doi:10.1023/B:PHOT.0000011962.05991.6c

    Article  CAS  Google Scholar 

  • Favier A et al (eds) (1995) Analysis of free radicals in biological systems. Birkhäuser, Basle

  • Ferrat L et al (2003) Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquatic Tox 65:187–204. doi:10.1016/S0166-445X(03)00133-4

    Article  CAS  Google Scholar 

  • Fu Y et al (2015) Unexpected decrease in yield and antioxidants in vegetable at very high CO2 levels. Environ Chem Lett 13:473–479. doi:10.1007/s10311-015-0522-6

    Article  CAS  Google Scholar 

  • Gorelick J, Bernstein J (2014) Elicitation: an underutilized tool for the development of medicinal plants as a source for therapeutic secondary metabolites. Adv Agron 124:201–230. doi:10.1016/B978-0-12-800138-7.00005-X

    Article  CAS  Google Scholar 

  • Gujarathi NP (2005) Phytoremediation of tetracycline and Oxytetracycline. Doctoral dissertation, Colorado State University

  • Gujarathi NP, Linden J (2005) Oxytetracycline inactivation by putative reactive oxygen species released to nutrient medium of Helianthus annuus hairy root cultures. Biotechnol Bioeng 92:393–402. doi:10.1002/bit.20698

    Article  CAS  Google Scholar 

  • Gujarathi NP et al (2005) Hairy roots of Helianthus annuus: a model system to study phytoremediation of tetracycline and oxytetracycline. Biotechnol Prog 21:775–780. doi:10.1021/bp0496225

    Article  CAS  Google Scholar 

  • Harper J, Balke N (1981) Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol 68:1349–1353. doi:10.1104/pp.68.6.1349

    Article  CAS  Google Scholar 

  • Iwahashi H et al (1991) Isolation and identification of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts formed by the decomposition of the hydroperoxides of linoleic acid, linolenic acid, and arachidonic acid by soybean lipoxygenase. Arch Biochem Biophy 285:172–180. doi:10.1016/0003-9861(91)90346-K

    Article  CAS  Google Scholar 

  • Jakab G et al (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Phys 139:267–274. doi:10.1104/pp.105.065698

    Article  CAS  Google Scholar 

  • Jensen C, Gujarathi N (2015) Characterization of a macrophyte microcosm as a surface water treatment system for antibiotics. Environ Prog Sustain Eng 34:1605–1612. doi:10.1002/ep.12158

    Article  CAS  Google Scholar 

  • Kachroo A (2003) Plastidial fatty acid signaling modulates salicylic acid–and jasmonic acid–mediated defense pathways in the Arabidopsis ssi2 mutant. Plant Cell 15:2952–2965. doi:10.1105/tpc.017301

    Article  CAS  Google Scholar 

  • Kashyap P, et al (2016) Nanodiagnostics for plant pathogens. Environ Chem Lett 1–7. doi:10.1007/s10311-016-0580-4

  • Kawano T, Bouteau F (2013) Salicylic acid-induced local and long-distance signaling models in plants. Long-distance systemic signaling and communication in plants. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-36470-9_2

    Google Scholar 

  • Khan N et al (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int J Plant Biol 1:1. doi:10.4081/pb.2010.e1

    Article  CAS  Google Scholar 

  • Kim P, Wells P (1996) Phenytoin-initiated hydroxyl radical formation: characterization by enhanced salicylate hydroxylation. Mol Pharmacol 49:172–181

    CAS  Google Scholar 

  • Koevoets I et al (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7:1335

    Article  Google Scholar 

  • Kukavica B et al (2009) Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. Plant Cell Physiol 50:304–317. doi:10.1093/pcp/pcn199

    Article  CAS  Google Scholar 

  • Lee C et al (2009) Nitrogen removal in constructed wetland systems. Eng Life Sci 9:11–22. doi:10.1002/elsc.200800049

    Article  CAS  Google Scholar 

  • Liszkay A et al (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667. doi:10.1007/s00425-003-1028-1

    Article  CAS  Google Scholar 

  • Mallick N, Mohn F (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193. doi:10.1016/S0176-1617(00)80189-3

    Article  CAS  Google Scholar 

  • Møller I et al (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. doi:10.1146/annurev.arplant.58.032806.103946

    Article  Google Scholar 

  • Patil R et al (2012) Contribution of taxane biosynthetic pathway gene expression to observed variability in paclitaxel accumulation in Taxus suspension cultures. Biotechnol J 7:418–427. doi:10.1002/biot.201100183

    Article  CAS  Google Scholar 

  • Renew S et al (2005) Sensitive detection and localization of hydroxyl radical production in cucumber roots and Arabidopsis seedlings by spin trapping electron paramagnetic resonance spectroscopy. Planta J 44:342–347. doi:10.1111/j.1365-313X.2005.02528.x

    Article  CAS  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defense: its role in plant growth and development. J Exp Botany 62:3321–3338. doi:10.1093/jxb/err031

    Article  CAS  Google Scholar 

  • Sabater-Jara AB et al (2011) Methyl jasmonate induces extracellular pathogenesis-related proteins in cell cultures of Capsicum chinense. Plant Signal Behav 6:440–442. doi:10.4161/psb.6.3.14451

    Article  CAS  Google Scholar 

  • Sanchez-Romera B et al (2014) Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Env 37:995–1008. doi:10.1111/pce.12214

    Article  CAS  Google Scholar 

  • Savvides A et al (2016) Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends Plant Sci 21:329–340. doi:10.1016/j.tplants.2015.11.003

    Article  CAS  Google Scholar 

  • Schnoor J et al (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Tech 29:318A–323A. doi:10.1021/es00007a002

    Article  CAS  Google Scholar 

  • Shabani L et al (2009) Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl jasmonate and salicylic acid. Russian J Plant Phys 56:621–626. doi:10.1134/S1021443709050069

    Article  CAS  Google Scholar 

  • Sharma S et al (2015) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962. doi:10.1007/s11356-014-3635-8

    Article  CAS  Google Scholar 

  • Sivanandhan G et al (2013) Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell, Tissue Organ Cult 114:121–129. doi:10.1007/s11240-013-0297-z

    Article  CAS  Google Scholar 

  • Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55. doi:10.1016/j.jmr.2005.08.013

    Article  CAS  Google Scholar 

  • Thomas W (ed) (1972) Indicators of environmental quality. Plenum Press, New York

    Google Scholar 

  • Tijani J et al (2016) Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ Chem Lett 14:27–49. doi:10.1007/s10311-015-0537-z

    Article  CAS  Google Scholar 

  • Tran N et al (2015) Sonochemical techniques to degrade pharmaceutical organic pollutants. Environmental Chem Lett 13:251–268. doi:10.1007/s10311-015-0512-8

    Article  CAS  Google Scholar 

  • Vaz S Jr (2014) Analytical techniques for the chemical analysis of plant biomass and biomass products. Anal Methods 6:8094–8105. doi:10.1039/C4AY00388H

    Article  CAS  Google Scholar 

  • Venkataraman S et al (2004) Detection of lipid radicals using EPR. Antioxid Redox Signal 6:6631–6638. doi:10.1089/152308604773934396

    Article  Google Scholar 

  • Walters D et al (2002) Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J Exp Bot 53:747–756. doi:10.1093/jexbot/53.369.747

    Article  CAS  Google Scholar 

  • Wang J, Wu J (2013) Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. In: Biotechnology of hairy root systems, Springer, Berlin, Heidelberg, pp. 55–89. doi:10.1007/10_2013_183

  • Xie Z, Chen Z (1999) Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiol 120:217–226. doi:10.1104/pp.120.1.217

    Article  CAS  Google Scholar 

  • Zhu J et al (2007) Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol 145:1533–1548. doi:10.1104/pp.107.107250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. James Linden of the Chemical and Biological Engineering with joint appointment in the Microbiology, Immunology, and Pathology Department at Colorado State University, Don Heyse in the Central Instruments Facility at Colorado State University, and Dr. Nastassja Lewinski at the Virginia Commonwealth University. Thanks to Dr. Bernard Goodman for discussion on the topic of plant-based EPR. Thanks to Dr. Sandy Eaton and Dr. Gareth Eaton at the University of Denver for conversation on the topic of EPR. Thanks to Dr. Bryon Donohoe at the DOE National Renewable Energy Laboratory as a mentor in imaging topics. Thanks to Amanda Bross and Kim White, fellow CSU research students. Thanks to Dr. Jörg Drewes, Dr. David Muñoz, and Dr. Chris Bellona at the Colorado School of Mines. Thanks to the anonymous reviewers for comments, guidance, critical analysis, and review of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory D. Jensen.

Ethics declarations

Ethical approval

This research complies with the United States National Science Foundation's Ethical and Responsible Conduct of Research.

Conflict of interest

No conflicts related to this research exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, C.D., Gujarathi, N.P. Methyl jasmonate improves radical generation in macrophyte phytoremediation. Environ Chem Lett 14, 549–558 (2016). https://doi.org/10.1007/s10311-016-0591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-016-0591-1

Keywords

Navigation