[go: up one dir, main page]

Skip to main content
Log in

Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling’s. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aarnes OJ, Breivik O, Reistad M (2012) Wave extremes in the northeast Atlantic. J Clim 25:1529–1543

    Article  Google Scholar 

  • Alari V, Kõuts, T (2012) Simulating wave-surge interaction in a non-tidal bay during cyclone Gudrun in January 2005. In Ocean: Past, Present and Future - 2012 IEEE/OES Baltic International Symposium, BALTIC 2012, art. no. 6249185

  • Ardhuin F, Jenkins AD (2006) On the interaction of surface waves and upper ocean turbulence. J Phys Oceanogr 36(3):551–557

    Article  Google Scholar 

  • Axell L (2002) Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea. J Geophys Res. doi:10.1029/2001JC000922

  • Babanin AV, Ganopolski A, Phillips WRC (2009) Wave-induced upper-ocean mixing in a climate model of intermediate complexity. Ocean Model 29(3):189–197

    Article  Google Scholar 

  • Babanin AV (2006) On a wave induced turbulence and a wave-mixed upper ocean layer. Geophys Res Lett 33:L20605

    Article  Google Scholar 

  • Bai X, Wang J, Schwab DJ, Yang Y, Luo L, Leshkevich GA, Liu S (2013) Modeling 1993–2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM. Ocean Model 65:40–63

    Article  Google Scholar 

  • Belcher SE, Grant AL, Hanley KE, Fox-Kemper B, Van Roekel L, Sullivan PP, Large WG, Brown A, Hines A, Calvert D, Rutgersson A, Pettersson H, Bidlot J-R, Janssen PA, Polton JA (2012) A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys Res Lett 39:L18605. doi:10.1029/2012GL052932

  • Bertin X, Li K, Roland A, Bidlot JR (2015) The contribution of short-waves in storm surges: two case studies in the Bay of Biscay. Cont Shelf Res 96:1–15

    Article  Google Scholar 

  • Bouillon S, Maqueda MA, Legat V, Fichefet T (2009) An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids. Ocean Model 27:174–184

    Article  Google Scholar 

  • Breivik Ø, Mogensen K, Bidlot JR, Balmaseda MA, Janssen PAEM (2015) Surface wave effects in the NEMO ocean model: forced and coupled experiments. J Geophys Res Oceans 120:2973–2992

    Article  Google Scholar 

  • Breivik Ø, Janssen PAEM, Bidlot J (2014) Approximate Stokes drift profiles in deep water. J Phys Oceanogr 44(9):2433–2445

    Article  Google Scholar 

  • Carlsson B, Rutgersson A, Smedman AS (2009) Investigating the effect of a wave-dependent momentum flux in a process oriented ocean model. Boreal Environ Res 14(1):3–17

    Google Scholar 

  • Chang YC, Chen GY, Tseng RS, Centurioni LR, Chu PC (2012) Observed near-surface currents under high wind speeds. J Geophys Res Oceans 117:2156–2202

    Google Scholar 

  • Craig PD, Banner ML (1994) Modeling wave-enhanced turbulence in the ocean surface layer. J Phys Oceanogr 24(12):2546–2559

    Article  Google Scholar 

  • Craik ADD, Leibovich S (1976) A rational model for Langmuir circulations. J Fluid Mech 73:401–426

    Article  Google Scholar 

  • Dieterich C, Schimanke S, Wang S, Väli G, Liu Y, Hordoir R, Axell L, Hoeglund A, Meier HEM (2013) Evaluation of the SMHI coupled atmosphere-ice-ocean model RCA4-NEMO Rep. Oceanogr 4, 80 pp

  • Dietrich JC, Zijlema M, Westerink JJ, Holthuijsen LH, Dawson C, Luettich RA, Jensen RE, Smith JM, Stelling GS, Stone GW (2011) Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast Eng 58(1):45–65

    Article  Google Scholar 

  • Donlon CJ, Martin M, Stark JD, Roberts-Jones J, Fiedler E, Wimmer W (2011) The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA) system. Remote Sens Environ 116:140–158

    Article  Google Scholar 

  • Drennan WM, Donelan MA, Terray EA, Katsaros KB (1996) Oceanic turbulence dissipation measurements in SWADE. J Phys Oceanogr 26(5):808–815

    Article  Google Scholar 

  • ECMWF (2015) CY41R1 Official IFS Documentation. https://software.ecmwf.int/wiki/display/IFS/CY41R1+Official+IFS+Documentation

  • Gemmrich J (2010) Strong turbulence in the wave crest region. J Phys Oceanogr 40(3):583–595

    Article  Google Scholar 

  • Gemmrich JR, Farmer DM (2004) Near-surface turbulence in the presence of breaking waves. J Phys Oceanogr 34(5):1067–1086

    Article  Google Scholar 

  • Gemmrich JR, Mudge TD, Polonichko VD (1994) On the energy input from wind to surface waves. J Phys Oceanogr 24(11):2413–2417

    Article  Google Scholar 

  • Grashorn S, Lettmann KA, Wolff JO, Badewien TH, Stanev EV (2015) East Frisian Wadden Sea hydrodynamics and wave effects in an unstructured-grid model. Ocean Dyn 65(3):419–434

    Article  Google Scholar 

  • Hasselmann K (1970) Wave-driven inertial oscillations. Geophys Fluid Dyn 1(3–4):463–502

    Article  Google Scholar 

  • Hordoir R, An BW, Haapala J, Dieterich C, Schimanke S, Hoeglund A, Meier HEM (2013) A 3D ocean modelling configuration for Baltic & North Sea exchange analysis. Rep Oceanogr 48:72

    Google Scholar 

  • Hu H, Wang J (2010) Modeling effects of tidal and wave mixing on circulation and thermohaline structures in the Bering Sea: Process studies. J Geophys Res Oceans 115(1), art. no. C01006

  • Janssen PAEM (2012) Ocean wave effects on the daily cycle in SST. J Geophys Res 117:C00J32

  • Janssen PAEM (1989) Wave-induced stress and the drag of air flow over sea waves. J Phys Oceanogr 19:745–754

    Article  Google Scholar 

  • Janssen F, Schrum C, Backhaus JO (1999) A climatological data set of temperature and salinity for the Baltic Sea and the North Sea. Deutsche Hydrographische Zeitschrift 51(9 Supplement):5–245

    Article  Google Scholar 

  • Kantha L, Lass HU, Prandke H (2010) A note on Stokes production of turbulence kinetic energy in the oceanic mixed layer: Observations in the Baltic Sea. Ocean Dyn 60(1):171–180

    Article  Google Scholar 

  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1994) Dynamics and modelling of ocean waves. Cambridge Univ. Press, New York

  • Lin X, Xie SP, Chen X, Xu L (2006) A well-mixed warm water column in the central Bohai Sea in summer: effects of tidal and surface wave mixing. J Geophys Res-Oceans 111(11), art. no. C11017

  • Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Longuet-Higgins MS, Stewart RW (1962) Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. J Fluid Mech 13:481–504

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modelisation. Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288–1619, 217 pp

  • Mastenbroek C, Burgers G, Janssen PAEM (1993) The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J Phys Oceanogr 23:1856–1866

    Article  Google Scholar 

  • Mellor G, Blumberg A (2004) Wave breaking and ocean surface layer thermal response. J Phys Oceanogr 34:693–698

    Article  Google Scholar 

  • Pham TV, Brauch J, Dieterich C, Frueh B, Ahrens B (2014) New coupled atmosphere–ocean-ice system COSMO-CLM/NEMO: assessing air temperature sensitivity over the North and Baltic Seas. Oceanologia 56(2):167–189

    Article  Google Scholar 

  • Pleskachevsky A, Dobrynin M, Babanin AV, Günther H, Stanev E (2011) Turbulent mixing due to surface waves indicated by remote sensing of suspended particulate matter and its implementation into coupled modeling of waves, turbulence, and circulation. J Phys Oceanogr 41(4):708–724

    Article  Google Scholar 

  • Pleskachevsky A, Eppel DP, Kapitza H (2009) Interaction of waves, currents and tides, and wave-energy impact on the beach area of Sylt Island. Ocean Dyn 59(3):451–461

    Article  Google Scholar 

  • Polton JA, Lewis DM, Belcher SE (2005) The role of wave-induced Coriolis–stokes forcing on the wind-driven mixed layer. J Phys Oceanogr 35:444–457

    Article  Google Scholar 

  • Reistad M, Breivik O, Haakenstad H, Aarnes OJ, Furevik BR, Bidlot JR (2011). A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J Geophys Res Oceans 116, doi:10/fmnr2m

  • Song Z, Qiao F, Song, Y (2012) Response of the equatorial basin-wide SST to non-breaking surface wave-induced mixing in a climate model: an amendment to tropical bias. J Geophys Res Oceans 117(7), art. no. C00J26

  • Soomere T, Behrens A, Tuomi L, Nielsen JW (2008) Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat Hazard Earth Sys 8(1):37–46

    Article  Google Scholar 

  • Soomere T (2005) Wind wave statistics in Tallinn Bay. Boreal Environ Res 10:103–118

    Google Scholar 

  • Soomere T (2003) Anisotropy of wind and wave regimes in the Baltic proper. J Sea Res 49(4):305–316

    Article  Google Scholar 

  • Qiao F, Yuan Y, Ezer T, Xia C, Yang Y, Lü X, Song Z (2010) A three-dimensional surface wave-ocean circulation coupled model and its initial testing. Ocean Dyn 60(5):1339–1355

    Article  Google Scholar 

  • Qiao F, Yuan Y, Yang Y, Zheng Q, Xia C, Ma J (2004) Wave-induced mixing in the upper ocean: distribution and application to a global ocean circulation model. Geophys Res Lett 31(11):L11303 1–4

  • Raudsepp U, Laanemets J, Haran G, Alari V, Pavelson J, Kõuts T (2011) Flow, waves and water exchange in the Suur strait, Gulf of Riga, in 2008. Oceanologia 53(1):35–56

    Article  Google Scholar 

  • Schneggenburger C, Günther H, Rosenthal W (2000) Spectral wave modelling with non-linear dissipation: validation and applications in a coastal tidal environment. Coast Eng 41(1–3):201–235

    Article  Google Scholar 

  • Stacey MW (1999) Simulations of the wind-forced near-surface circulation in Knight inlet: a parameterization of the roughness length. J Phys Oceanogr 29:1363–1367

    Article  Google Scholar 

  • Stokes GG (1847) On the theory of oscillatory waves. Trans Cambridge Philos Soc 8:441–455

    Google Scholar 

  • Zambon JB, He R, Warner JC (2014) Investigation of hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dyn 64(11):1535–1554

    Article  Google Scholar 

  • The WAMDI Group (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810

    Article  Google Scholar 

  • Terray EA, Donelan MA, Agrawal YC, Drennan WM, Kahma KK, Williams AJ, Hwang PA, Kitaigorodskii SA (1996) Estimates of kinetic energy dissipation under breaking waves. J Phys Oceanogr 26(5):792–807

    Article  Google Scholar 

  • Tuomi L, Pettersson H, Fortelius C, Tikka K, Björkqvist JV, Kahma KK (2014) Wave modelling in archipelagos. Coast Eng 83:205–220

    Article  Google Scholar 

  • Tuomi L, Myrberg K, Lehmann A (2012a) The performance of the parameterisations of vertical turbulence in the 3D modelling of hydrodynamics in the Baltic Sea. Cont Shelf Res 50–51:64–79

    Article  Google Scholar 

  • Tuomi L, Kahma KK, Fortelius C (2012b) Modelling fetch-limited wave growth from an irregular shoreline. J Mar Syst 105–108:96–105

    Article  Google Scholar 

  • Tuomi L, Kahma KK, Pettersson H (2011) Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ Res 16(6):451–472

    Google Scholar 

  • Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61(2):235–265

    Article  Google Scholar 

  • Väli G, Meier HEM, Elken J (2013) Simulated halocline variability in the Baltic Sea and its impact on hypoxia during 1961–2007. J Geophys Res Oceans 118(12):6982–7000

    Article  Google Scholar 

  • Warner JC, Armstrong B, He R, Zambon JB (2010) Development of a coupled ocean–atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model 35(3):230–244

    Article  Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. John Wiley & Sons, New York

    Google Scholar 

Download references

Acknowledgments

This work was financially supported through the WAVE2NEMO grant (COPERNICUS). Ø. Breivik acknowledges the MyWave FP7 project (grant FP-7-SPACE-2011-284455). We are grateful for Mrs. Laura Siitam for providing the MODIS image, for Dr. Sebastian Grayek for helping in setting up the NEMO model and for Mrs. Gardeike for helping with the illustration. We also thank the anonymous reviewer for his/her constructive criticism. We thank Finnish Meteorological Institute for providing the measured wave data, Swedish Meteorological and Hydrological Institute for providing in situ temperature profile data and Marine Systems Institute at Tallinn University of Technology for providing SST data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Alari.

Additional information

Responsible Editor: Birgit Andrea Klein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alari, V., Staneva, J., Breivik, Ø. et al. Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model. Ocean Dynamics 66, 917–930 (2016). https://doi.org/10.1007/s10236-016-0963-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-0963-x

Keywords

Navigation