[go: up one dir, main page]

Skip to main content
Log in

Superinterpolation in Highly Oscillatory Quadrature

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Asymptotic expansions for oscillatory integrals typically depend on the values and derivatives of the integrand at a small number of critical points. We show that using values of the integrand at certain complex points close to the critical points can actually yield a higher asymptotic order approximation to the integral. This superinterpolation property has interesting ramifications for numerical methods based on exploiting asymptotic behaviour. The asymptotic convergence rates of Filon-type methods can be doubled at no additional cost. Numerical steepest descent methods already exhibit this high asymptotic order, but their analyticity requirements can be significantly relaxed. The method can be applied to general oscillators with stationary points as well, through a simple change of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46, 501–517 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  2. M.V. Berry, C.J. Howls, Hyperasymptotics for integrals with saddles, Proc. R. Soc. A 434(1892), 657–675 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Bleistein, R. Handelsman, Asymptotic Expansions of Integrals (Holt, Rinehart and Winston, New York, 1975).

    MATH  Google Scholar 

  4. J.P. Boyd, The devil’s invention: asymptotic, superasymptotic and hyperasymptotic series, Acta Appl. Math. 56(1), 1–29 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. S.N. Chandler-Wilde, D.C. Hothersall, Efficient calculation of the Green function for acoustic propagation above a homogeneous impedance plane, J. Sound Vib. 180(5), 705–724 (1995).

    Article  MathSciNet  Google Scholar 

  6. R. Cools, A. Haegemans, Algorithm 824: CUBPACK: a package for automatic cubature; framework description, ACM Trans. Math. Softw. 29(3), 287–296 (2003).

    Article  MATH  Google Scholar 

  7. K.T.R. Davies, M.R. Strayer, G.D. White, Complex-plane methods for evaluating highly oscillatory integrals in nuclear physics. I, J. Phys. G: Nucl. Phys. 14(7), 961–972 (1988).

    Article  Google Scholar 

  8. P.J. Davis, P. Rabinowitz, Methods of Numerical Integration. Computer Science and Applied Mathematics (Academic Press, New York, 1984).

    MATH  Google Scholar 

  9. A. Deaño, D. Huybrechs, Complex Gaussian quadrature of oscillatory integrals, Numer. Math. 112(2), 197–219 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Deaño, D. Huybrechs, A.B.J. Kuijlaars, Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature, J. Approx. Theory 162(12), 2202–2224 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Domínguez, I.G. Graham, V.P. Smyshlyaev, Stability and error estimates for Filon–Clenshaw–Curtis rules for highly-oscillatory integrals, IMA J. Numer. Anal. (2011). doi:10.1093/imanum/drq036.

    Google Scholar 

  12. J.D. Donaldson, D. Elliott, A unified approach to quadrature rules with asymptotic estimates of their remainders, SIAM J. Numer. Anal. 9, 573–602 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  13. G.A. Evans, J.R. Webster, A comparison of some methods for the evaluation of highly oscillatory integrals, J. Comput. Appl. Math. 112(1), 55–69 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Gil, J. Segura, N.M. Temme, Numerical Methods for Special Functions (SIAM, Philadelphia, 2007).

    Book  MATH  Google Scholar 

  15. A. Glaser, X. Liu, V. Rokhlin, A fast algorithm for the calculation of the roots of special functions, SIAM J. Sci. Comput. 29(4), 1420–1438 (2008).

    Article  MathSciNet  Google Scholar 

  16. G.H. Golub, J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comput. 23(106), 221–230 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Huybrechs, S. Olver, Highly oscillatory quadrature, in Highly Oscillatory Problems, ed. by B. Engquist, A. Fokas, E. Hairer, A. Iserles (eds.) (Cambridge University Press, Cambridge, 2009), pp. 25–50.

    Chapter  Google Scholar 

  18. D. Huybrechs, S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation, SIAM J. Numer. Anal. 44(3), 1026–1048 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Iserles, S.P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation, BIT 44(4), 755–772 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Iserles, S.P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. Soc. Lond. A 461, 1383–1399 (2005).

    Article  MATH  Google Scholar 

  21. J.C. Mason, D.C. Handscomb, Chebyshev Polynomials (Chapman and Hall/CRC Press, London/Boca Raton, 2003).

    MATH  Google Scholar 

  22. J.M. Melenk, On the convergence of Filon quadrature, J. Comput. Appl. Math. 234, 1692–1701 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  23. F.W.J. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974).

    Google Scholar 

  24. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010).

    MATH  Google Scholar 

  25. S. Olver, Moment-free numerical approximation of highly oscillatory integrals with stationary points, Eur. J. Appl. Math. 18, 435–447 (2006).

    Article  MathSciNet  Google Scholar 

  26. S. Olver, Fast, numerically stable computation of oscillatory integrals with stationary points, BIT 50, 149–171 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Paris, On the use of Hadamard expansions in hyperasymptotic evaluation of Laplace-type integrals. I: real variable, J. Comput. Appl. Math. 167(2), 293–319 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  28. R.B. Paris, Exactification of the method of steepest descents: the Bessel functions of large order and argument, Proc. R. Soc. A 460(2049), 2737–2759 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl. 23(1), 97–120 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Wong, Asymptotic Approximation of Integrals (SIAM, Philadelphia, 2001).

    Book  Google Scholar 

  31. S. Xiang, Efficient Filon-type methods for \(\int_{a}^{b}f(x)\,\mathrm {e}^{\mathrm{i}}\omega g(x)\,\mathrm{d}x\), Numer. Math. 105(4), 658 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan Huybrechs.

Additional information

Communicated by Arieh Iserles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huybrechs, D., Olver, S. Superinterpolation in Highly Oscillatory Quadrature. Found Comput Math 12, 203–228 (2012). https://doi.org/10.1007/s10208-011-9102-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-011-9102-8

Keywords

Mathematics Subject Classification (2000)