Abstract
Asymptotic expansions for oscillatory integrals typically depend on the values and derivatives of the integrand at a small number of critical points. We show that using values of the integrand at certain complex points close to the critical points can actually yield a higher asymptotic order approximation to the integral. This superinterpolation property has interesting ramifications for numerical methods based on exploiting asymptotic behaviour. The asymptotic convergence rates of Filon-type methods can be doubled at no additional cost. Numerical steepest descent methods already exhibit this high asymptotic order, but their analyticity requirements can be significantly relaxed. The method can be applied to general oscillators with stationary points as well, through a simple change of variables.
Similar content being viewed by others
References
J.-P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46, 501–517 (2004).
M.V. Berry, C.J. Howls, Hyperasymptotics for integrals with saddles, Proc. R. Soc. A 434(1892), 657–675 (1991).
N. Bleistein, R. Handelsman, Asymptotic Expansions of Integrals (Holt, Rinehart and Winston, New York, 1975).
J.P. Boyd, The devil’s invention: asymptotic, superasymptotic and hyperasymptotic series, Acta Appl. Math. 56(1), 1–29 (1999).
S.N. Chandler-Wilde, D.C. Hothersall, Efficient calculation of the Green function for acoustic propagation above a homogeneous impedance plane, J. Sound Vib. 180(5), 705–724 (1995).
R. Cools, A. Haegemans, Algorithm 824: CUBPACK: a package for automatic cubature; framework description, ACM Trans. Math. Softw. 29(3), 287–296 (2003).
K.T.R. Davies, M.R. Strayer, G.D. White, Complex-plane methods for evaluating highly oscillatory integrals in nuclear physics. I, J. Phys. G: Nucl. Phys. 14(7), 961–972 (1988).
P.J. Davis, P. Rabinowitz, Methods of Numerical Integration. Computer Science and Applied Mathematics (Academic Press, New York, 1984).
A. Deaño, D. Huybrechs, Complex Gaussian quadrature of oscillatory integrals, Numer. Math. 112(2), 197–219 (2009).
A. Deaño, D. Huybrechs, A.B.J. Kuijlaars, Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature, J. Approx. Theory 162(12), 2202–2224 (2010).
V. Domínguez, I.G. Graham, V.P. Smyshlyaev, Stability and error estimates for Filon–Clenshaw–Curtis rules for highly-oscillatory integrals, IMA J. Numer. Anal. (2011). doi:10.1093/imanum/drq036.
J.D. Donaldson, D. Elliott, A unified approach to quadrature rules with asymptotic estimates of their remainders, SIAM J. Numer. Anal. 9, 573–602 (1972).
G.A. Evans, J.R. Webster, A comparison of some methods for the evaluation of highly oscillatory integrals, J. Comput. Appl. Math. 112(1), 55–69 (1999).
A. Gil, J. Segura, N.M. Temme, Numerical Methods for Special Functions (SIAM, Philadelphia, 2007).
A. Glaser, X. Liu, V. Rokhlin, A fast algorithm for the calculation of the roots of special functions, SIAM J. Sci. Comput. 29(4), 1420–1438 (2008).
G.H. Golub, J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comput. 23(106), 221–230 (1969).
D. Huybrechs, S. Olver, Highly oscillatory quadrature, in Highly Oscillatory Problems, ed. by B. Engquist, A. Fokas, E. Hairer, A. Iserles (eds.) (Cambridge University Press, Cambridge, 2009), pp. 25–50.
D. Huybrechs, S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation, SIAM J. Numer. Anal. 44(3), 1026–1048 (2006).
A. Iserles, S.P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation, BIT 44(4), 755–772 (2004).
A. Iserles, S.P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. Soc. Lond. A 461, 1383–1399 (2005).
J.C. Mason, D.C. Handscomb, Chebyshev Polynomials (Chapman and Hall/CRC Press, London/Boca Raton, 2003).
J.M. Melenk, On the convergence of Filon quadrature, J. Comput. Appl. Math. 234, 1692–1701 (2010).
F.W.J. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974).
F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010).
S. Olver, Moment-free numerical approximation of highly oscillatory integrals with stationary points, Eur. J. Appl. Math. 18, 435–447 (2006).
S. Olver, Fast, numerically stable computation of oscillatory integrals with stationary points, BIT 50, 149–171 (2010).
R. Paris, On the use of Hadamard expansions in hyperasymptotic evaluation of Laplace-type integrals. I: real variable, J. Comput. Appl. Math. 167(2), 293–319 (2004).
R.B. Paris, Exactification of the method of steepest descents: the Bessel functions of large order and argument, Proc. R. Soc. A 460(2049), 2737–2759 (2004).
A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl. 23(1), 97–120 (1979).
R. Wong, Asymptotic Approximation of Integrals (SIAM, Philadelphia, 2001).
S. Xiang, Efficient Filon-type methods for \(\int_{a}^{b}f(x)\,\mathrm {e}^{\mathrm{i}}\omega g(x)\,\mathrm{d}x\), Numer. Math. 105(4), 658 (2007).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Arieh Iserles.
Rights and permissions
About this article
Cite this article
Huybrechs, D., Olver, S. Superinterpolation in Highly Oscillatory Quadrature. Found Comput Math 12, 203–228 (2012). https://doi.org/10.1007/s10208-011-9102-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10208-011-9102-8