[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Decreased GM3 correlates with proteinuria in minimal change nephrotic syndrome and focal segmental glomerulosclerosis

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Glycolipids on cell membrane rafts play various roles by interacting with glycoproteins. Recently, it was reported that the glycolipid GM3 is expressed in podocytes and may play a role in podocyte protection. In this report, we describe the correlation between changes in GM3 expression in glomeruli and proteinuria in minimal change nephrotic syndrome (MCNS) and focal segmental glomerulosclerosis (FSGS) patients.

Methods

We performed a case–control study of the correlation between nephrin/GM3 expression levels and proteinuria in MCNS and FSGS patients who underwent renal biopsy at our institution between 2009 and 2014. Normal renal tissue sites were used from patients who had undergone nephrectomy at our institution and gave informed consent.

Results

Both MCNS and FSGS had decreased GM3 and Nephrin expression compared with the normal (normal vs. MCNS, FSGS; all p < 0.01). Furthermore, in both MCNS and FSGS, GM3 expression was negatively correlated with proteinuria (MCNS: r = − 0.61, p < 0.01, FSGS: r = − 0.56, p < 0.05). However, nephrin expression had a trend to correlate with proteinuria in FSGS (MCNS: r = 0.19, p = 0.58, FSGS: r = − 0.48, p = 0.06). Furthermore, in a simple linear regression analysis, GM3 expression also correlated with proteinuric change after 12 months of treatment (MCNS: r = 0.40, p = 0.38, FSGS: r = 0. 68, p < 0.05).

Conclusion

We showed for the first time that decreased GM3 expression correlates with proteinuria in MCNS and FSGS patients. Further studies are needed on the podocyte-protective effects of GM3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 2017;18:361–74.

    Article  CAS  Google Scholar 

  2. Hakomori S. Glycosphingolipids. Sci Am. 1986;254:44–53.

    Article  CAS  Google Scholar 

  3. Sasaki N, Toyoda M, Ishiwata T. Gangliosides as signaling regulators in cancer. Int J Mol Sci. 2021. https://doi.org/10.3390/IJMS22105076.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hakomori SI, Handa K. GM3 and cancer. Glycoconj J. 2015;32:1–8.

    Article  CAS  Google Scholar 

  5. Hakomori SI, Handa K, Iwabuchi K, Yamamura S, Prinetti A. New insights in glycosphingolipid function: “glycosignaling domain”, a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology. 1998. https://doi.org/10.1093/OXFORDJOURNALS.GLYCOB.A018822.

    Article  PubMed  Google Scholar 

  6. Bremer EG, Schlessinger J, Hakomori S. Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem. 1986;261:2434–40.

    Article  CAS  Google Scholar 

  7. Yoon SJ, Nakayama KI, Hikita T, Handa K, Hakomori SI. Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci USA. 2006;103:18987–91.

    Article  CAS  Google Scholar 

  8. Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, et al. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA. 2007;104:13678–83.

    Article  CAS  Google Scholar 

  9. Kawashima N, Yoon SJ, Itoh K, Nakayama KI. Tyrosine kinase activity of epidermal growth factor receptor is regulated by GM3 binding through carbohydrate to carbohydrate interactions. J Biol Chem. 2009;284:6147–55.

    Article  CAS  Google Scholar 

  10. Kawashima N, Nishimiya Y, Takahata S, Nakayama KI. Induction of glycosphingolipid GM3 expression by valproic acid suppresses cancer cell growth. J Biol Chem. 2016;291:21424–33.

    Article  CAS  Google Scholar 

  11. Saito M, Sugiyama K. Gangliosides in rat kidney: composition, distribution, and developmental changes. Arch Biochem Biophys. 2001;386:11–6.

    Article  CAS  Google Scholar 

  12. Savas B, Astarita G, Aureli M, Sahali D, Ollero M. Gangliosides in podocyte biology and disease. Int J Mol Sci. 2020;21:1–17.

    Article  Google Scholar 

  13. Yoshikawa M, Go S, Takasaki K, Kakazu Y, Ohashi M, Nagafuku M, et al. Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci USA. 2009;106:9483–8.

    Article  CAS  Google Scholar 

  14. Matsuoka M, Onodera T, Homan K, Sasazawa F, Furukawa JI, Momma D, et al. Depletion of gangliosides enhances articular cartilage repair in mice. Sci Rep. 2017. https://doi.org/10.1038/SREP43729.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Suzuki M, Nagane M, Kato K, Yamauchi A, Shimizu T, Yamashita H, et al. Endothelial ganglioside GM3 regulates angiogenesis in solid tumors. Biochem Biophys Res Commun. 2021;569:10–6.

    Article  CAS  Google Scholar 

  16. Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA. 2003;100:3445–9.

    Article  CAS  Google Scholar 

  17. Jin J, Sison K, Li C, Tian R, Wnuk M, Sung HK, et al. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell. 2012;151:384–99.

    Article  CAS  Google Scholar 

  18. Kaneko T, Tsubakihara Y, Fushimi H, Yamaguchi S, Takabatake Y, Rakugi H, et al. Histochemical and immunoelectron microscopic analysis of ganglioside GM3 in human kidney. Clin Exp Nephrol. 2015. https://doi.org/10.1007/s10157-014-1003-0.

    Article  PubMed  Google Scholar 

  19. Aoyama T, Kamata K, Yamanaka N, Takeuchi Y, Higashihara M, Kato S. Characteristics of polyclonal anti-human nephrin antibodies induced by genetic immunization using nephrin cDNA. Nephrol Dial Transplant. 2006. https://doi.org/10.1093/ndt/gfk101.

    Article  PubMed  Google Scholar 

  20. Naito S, Kamata K, Aoyama T, Yamanaka N, Okamoto T, Tazaki H. Antigen-binding abilities of anti-nephrin antibody are prescribed by signal sequence of expression vector in genetic immunization. Clin Exp Nephrol. 2011. https://doi.org/10.1007/s10157-010-0399-4.

    Article  PubMed  Google Scholar 

  21. Ohtani H, Wakui H, Komatsuda A, Okuyama S, Masai R, Maki N, et al. Distribution of glomerular IgG subclass deposits in malignancy-associated membranous nephropathy. Nephrol Dial Transplant. 2004;19:574–9.

    Article  CAS  Google Scholar 

  22. Naito S, Pippin JW, Shankland SJ. The glomerular parietal epithelial cell’s responses are influenced by SM22 alpha levels. BMC Nephrol. 2014. https://doi.org/10.1186/1471-2369-15-174.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kopp JB, Anders HJ, Susztak K, Podestà MA, Remuzzi G, Hildebrandt F, et al. Podocytopathies. Nat Rev Dis Primers. 2020. https://doi.org/10.1038/S41572-020-0196-7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zador IZ, Deshmukh GD, Kunkel R, Johnson K, Radin NS, Shayman JA. A role for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin-induced diabetes mellitus. J Clin Invest. 1993;91:797–803.

    Article  CAS  Google Scholar 

  25. Grove KJ, Voziyan PA, Spraggins JM, Wang S, Paueksakon P, Harris RC, et al. Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. J Lipid Res. 2014;55:1375–85.

    Article  CAS  Google Scholar 

  26. Novak A, Režić Mužinić N, Čikeš Čulić V, Božić J, Tičinović Kurir T, Ferhatović L, et al. Renal distribution of ganglioside GM3 in rat models of types 1 and 2 diabetes. J Physiol Biochem. 2013;69:727–35.

    Article  CAS  Google Scholar 

  27. Kwak DH, Rho YI, Kwon OD, Ahan SH, Song JH, Choo YK, et al. Decreases of ganglioside GM3 in streptozotocin-induced diabetic glomeruli of rats. Life Sci. 2003;72:1997–2006.

    Article  CAS  Google Scholar 

  28. Kawachi H, Fukusumi Y. New insight into podocyte slit diaphragm, a therapeutic target of proteinuria. Clin Exp Nephrol. 2020;24:193–204.

    Article  Google Scholar 

  29. Verma R, Venkatareddy M, Kalinowski A, Li T, Kukla J, Mollin A, et al. Nephrin is necessary for podocyte recovery following injury in an adult mature glomerulus. PLoS ONE. 2018. https://doi.org/10.1371/JOURNAL.PONE.0198013.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Martin CE, Jones N. Nephrin signaling in the podocyte: an updated view of signal regulation at the slit diaphragm and beyond. Front Endocrinol (Lausanne). 2018. https://doi.org/10.3389/FENDO.2018.00302.

    Article  Google Scholar 

  31. Ha T-S. Roles of adaptor proteins in podocyte biology. World J Nephrol. 2013;2:1.

    Article  Google Scholar 

  32. Hakomori S. Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling. Ann Braz Acad Sci. 2004;76:553–72.

    Article  CAS  Google Scholar 

  33. Liu X, Lü L, Tao BB, Zhu YC. All-trans retinoic acid inhibits the increases in fibronectin and PAI-1 induced by TGF-beta1 and Ang II in rat mesangial cells. Acta Pharmacol Sin. 2008;29:1035–41.

    Article  CAS  Google Scholar 

  34. Zhang L, Chen XP, Qin H, Jiang L, Qin YH. ATRA attenuate proteinuria via downregulation of TRPC6 in glomerulosclerosis rats induced by adriamycin. Ren Fail. 2018;40:266–72.

    Article  CAS  Google Scholar 

  35. van Beneden K, Geers C, Pauwels M, Mannaerts I, Verbeelen D, van Grunsven LA, et al. Valproic acid attenuates proteinuria and kidney injury. J Am Soc Nephrol. 2011;22:1863–75.

    Article  Google Scholar 

  36. Khan S, Jena G, Tikoo K, Kumar V. Valproate attenuates the proteinuria, podocyte and renal injury by facilitating autophagy and inactivation of NF-κB/iNOS signaling in diabetic rat. Biochimie. 2015;110:1–16.

    Article  CAS  Google Scholar 

  37. Inoue K, Gan G, Ciarleglio M, Zhang Y, Tian X, Pedigo CE, et al. Podocyte histone deacetylase activity regulates murine and human glomerular diseases. J Clin Invest. 2019;129:1295–313.

    Article  Google Scholar 

  38. Varghese R, Majumdar A. A new prospect for the treatment of nephrotic syndrome based on network pharmacology analysis. Curr Res Physiol. 2022;5:36–47.

    Article  CAS  Google Scholar 

  39. Prinetti A, Basso L, Appierto V, Villani MG, Valsecchi M, Loberto N, et al. Altered sphingolipid metabolism in N-(4-hydroxyphenyl)-retinamide-resistant A2780 human ovarian carcinoma cells. J Biol Chem. 2003;278:5574–83.

    Article  CAS  Google Scholar 

  40. Osanai T, Watanabe Y, Sanai Y. Glycolipid sialyltransferases are enhanced during neural differentiation of mouse embryonic carcinoma cells, P19. Biochem Biophys Res Commun. 1997;241:327–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We also thank Dr. Takashi. Sano for help with the diagnosis and Ms. Naoko. Ishigaki for help with the tissue staining. We also thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This work was supported by JSPS KAKENHI grants (18K08249 to SN, 17K09709 and 20K08615 to NK).

Author information

Authors and Affiliations

Authors

Contributions

SN conceived and designed the study, and SN and NK supervised it. SN and NK edited the manuscript. All authors contributed to the review and approval of the final manuscript.

Corresponding author

Correspondence to Shokichi Naito.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All procedures involving human participants were in accordance with ethical standards of the institution at which the studies were conducted [approval number of Kitasato University Medical Ethics Organization (KMEO): #KMEO B17-239] and with standards of the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

All patients provided written informed consent for their normal kidney tissues to be obtained. Information about the intended use of biopsies from MCNS and FSGS was available on the Kitasato University Medical Ethics Organization website, allowing subjects the opportunity to opt out of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naito, S., Kawashima, N., Ishii, D. et al. Decreased GM3 correlates with proteinuria in minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Clin Exp Nephrol 26, 1078–1085 (2022). https://doi.org/10.1007/s10157-022-02249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-022-02249-2

Keywords

Navigation