Abstract
A wide variety of publicly available heterogeneous data has provided us with an opportunity to meander through contextual snippets relevant to a particular event or persons of interest. One example of a heterogeneous source is online news articles where both images and text descriptions may co-exist in documents. Many of the images in a news article may contain faces of people. Names of many of the faces may not appear in the text. An expert on the topic may be able to identify people in images or at least recognize the context of the faces who are not widely known. However, it is difficult as well as expensive to employ topic experts of news topics to label every face of a massive news archive. In this paper, we describe an approach named F2ConText that helps analysts build contextual information, e.g., named entity context and geographical context of facial images found within news articles. Our approach extracts facial features of the faces detected in the images of publicly available news articles and learns probabilistic mappings between the features and the contents of the articles in an unsupervised manner. Afterward, it translates the mappings to geographical distributions and generates a contextual template for every face detected in the collection. This paper demonstrates three empirical studies—related to construction of context-based genealogy of events, tracking of a contextual phenomenon over time, and creation of contextual clusters of faces—to evaluate the effectiveness of the generated contexts.
Similar content being viewed by others
Notes
Codes and data are provided here: http://dal.cs.utep.edu/projects/storyboarding/KAIS/. Password: 16context.
References
Ahonen T, Matas J, He C, Pietikäinen M (2009) Rotation invariant image description with local binary pattern histogram Fourier features. In: SCIA
Alias-i (2011) LingPipe 4.1.0. http://alias-i.com/lingpipe/. Accessed 30 Sept 2018
Bier EA, Ishak EW, Chi E (2006) Entity workspace: an evidence file that aids memory, inference, and reading. In: ISI, pp 466–472
Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. JMLR 3:993–1022. http://dl.acm.org/citation.cfm?id=944919.944937
Bruni E, Tran GB, Baroni M (2011) Distributional semantics from text and images. In: Proceedings of the GEMS 2011 workshop on geometrical models of natural language semantics. Association for Computational Linguistics, pp 22–32
Bruni E, Tran N-K, Baroni M (2014) Multimodal distributional semantics. J Artif Intell Res 49:1–47
Cai D, Yu S, Wen J-R, Ma W-Y (2003) VIPS: a vision-based page segmentation algorithm. Technical report, MSR-TR-2003-79
Chakrabarti S, Sarawagi S, Dom B (1998) Mining surprising patterns using temporal description length. In: VLDB ’98, vol 98, pp 606–617
Chen L, Hu B, Zhang L, Li M, Zhang H (2003) Face annotation for family photo album management. IJIG 3(01):81–94
Choi JY, De Neve W, Ro YM, Plataniotis KN (2010) Automatic face annotation in personal photo collections using context-based unsupervised clustering and face information fusion. IEEE Trans Circuits Syst Video Technol 20(10):1292–1309
Choi JY, Yang S, Ro YM, Plataniotis KN (2008) Face annotation for personal photos using context-assisted face recognition. In: Proceedings of the 1st ACM international conference on multimedia information retrieval. ACM, New York, pp 44–51
Christopher D, Manning PR, Schtze H (2008) Introduction to information retrieval, chapter 13. Text classification and Naive Bayes. Cambridge University Press, Cambridge
Das-Neves F, Fox EA, Yu X (2005) Connecting topics in document collections with stepping stones and pathways. In: CIKM ’05, pp 91–98
Ester M, peter Kriegel HSJ, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD
Faloutsos C, McCurley KS, Tomkins A (2004) Fast discovery of connection subgraphs. In: KDD 04’, pp 118–127
Fang L, Sarma AD, Yu C, Bohannon P (2011) Rex: explaining relationships between entity pairs. Proc VLDB Endow 5(3):241–252
Fauzi F, Hong J-L, Belkhatir M (2009) Webpage segmentation for extracting images and their surrounding contextual information. In: MM. https://doi.org/10.1145/1631272.1631379
Feng S, Manmatha R, Lavrenko V (2004) Multiple bernoulli relevance models for image and video annotation. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, vol 2. IEEE, pp II–II
Feng Y, Lapata M (2008) Automatic image annotation using auxiliary text information. In: ACL, vol 8, pp 272–280
Finkel JR, Grenager T, Manning C (2005) Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd annual meeting on association for computational linguistics. Association for Computational Linguistics, pp 363–370. http://nlp.stanford.edu/~manning/papers/gibbscrf3.pdf
Fisichella M, Stewart A, Denecke K, Nejdl W (2010) Unsupervised public health event detection for epidemic intelligence. In: CIKM ’10, pp 1881–1884
FMS Inc. (2017) Sentinel visualizer. www.fmsasg.com. Accessed 30 Sept 2018
GeoDataSource (2018) World cities database. www.geodatasource.com/world-cities-database. Accessed 30 Sept 2018
Guillaumin M, Mensink T, Verbeek J, Schmid C (2012) Face recognition from caption-based supervision. Int J Comput Vis 96(1):64
Gung J, Kalita J (2012) Summarization of historical articles using temporal event clustering. In: HLT-NAACL ’12, pp 631–635. http://dl.acm.org/citation.cfm?id=2382029.2382134
Hassner T, Harel S, Paz E, Enbar R (2015) Effective face frontalization in unconstrained images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4295–4304
Heath K, Gelfand N, Ovsjanikov M, Aanjaneya M, Guibas LJ (2010) Image webs: computing and exploiting connectivity in image collections. In: CVPR ’10, pp 3432–3439
Heuer R (1999) Psychology of intelligence analysis. In: CIA ’99
Hossain MS, Andrews C, Ramakrishnan N, North C (2011) Helping intelligence analysts make connections. In: AAAI ’11 workshop on scalable integration of analytics and visualization
Hossain MS, Butler P, Boedihardjo AP, Ramakrishnan N (2012) Storytelling in entity networks to support intelligence analysts. In: KDD ’12. https://doi.org/10.1145/2339530.2339742
Hossain MS, Gresock J, Edmonds Y, Helm R, Potts M, Ramakrishnan N (2012) Connecting the dots between pubmed abstracts. PLoS ONE 7(1):e29509
Huang C, Ai H, Li Y, Lao S (2007) High-performance rotation invariant multiview face detection. TPAMI 29(4):671–686
Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report 07–49, University of Massachusetts, Amherst
IBM Analytics for a Safer Planet (2016) www.ibm.com/analytics/us/en/safer-planet/. Accessed 30 Sept 2018
IN-SPIRE Visual Document Analysis (2014) http://in-spire.pnnl.gov/. Accessed 30 Sept 2018
Kader MA, Boedihardjo AP, Naim SM, Hossain MS (2016) Contextual embedding for distributed representations of entities in a text corpus. In: KDD BigMine 2016, vol 53 of proceedings of machine learning research, PMLR, San Francisco, CA, USA, pp 35–50. http://proceedings.mlr.press/v53/kader16.html
Kader MA, Naim SM, Boedihardjo AP, Hossain MS (2016) Connecting the dots using contextual information hidden in text and images. In: AAAI
Kalva P, Enembreck F, Koerich A (2007) Web image classification based on the fusion of image and text classifiers. In: ICDAR, vol 1, pp 561–568
Kang H, Plaisant C, Lee B, Bederson BB (2007) NetLens: iterative exploration of content-actor network data. Inf Vis 6(1):18–31
Karpathy A, Fei-Fei L (2015) Deep visual-semantic alignments for generating image descriptions. In: CVPR, pp 3128–3137
Karpathy A, Joulin A, Li FFF (2014) Deep fragment embeddings for bidirectional image sentence mapping. In: Advances in neural information processing systems, pp 1889–1897
Kinsella S, Murdock V, O’Hare N (2011) “I’m eating a sandwich in glasgow”: modeling locations with tweets. In: SMUC, pp 61–68
Koch GG, Koldehofe B, Rothermel K (2010) Cordies: expressive event correlation in distributed systems. In: DEBS ’10, pp 26–37
Kumar D, Ramakrishnan N, Helm RF, Potts M (2006) Algorithms for storytelling. In: KDD ’06
Lai JH, Yuen PC, Feng GC (2001) Face recognition using holistic fourier invariant features. Pattern Recognit 34(1):95–109
Laxman S, Sastry P, Unnikrishnan K (2005) Discovering frequent episodes and learning hidden Markov models: a formal connection. KDE 17(11):1505–1517
Le D-D, Satoh S (2008) Unsupervised face annotation by mining the web. In: Eighth IEEE international conference on data mining, 2008. ICDM’08. IEEE, pp 383–392
Lee H-J, Lee W-S, Chung J-H (2001) Face recognition using fisherface algorithm and elastic graph matching. In: ICIP, pp 998–1001
Li H, Lin Z, Shen X, Brandt J, Hua G (2015) A convolutional neural network cascade for face detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5325–5334
Li X, Cong G, Li X-L, Pham T-AN, Krishnaswamy S (2015) Rank-geofm: a ranking based geographical factorization method for point of interest recommendation. In: SIGIR ’15, pp 433–442. https://doi.org/10.1145/2766462.2767722
Little S, Jargalsaikhan I, Clawson K, Nieto M, Li H, Direkoglu C, O’Connor NE, Smeaton AF, Scotney B, Wang H, Liu J (2013) An information retrieval approach to identifying infrequent events in surveillance video. In: ICMR ’13, pp 223–230. https://doi.org/10.1145/2461466.2461503
Mishra A, Mishra N, Agrawal A (2010) Context-aware restricted geographical domain question answering system. In: CICN ’10, pp 548–553
National Research Council (2002) Making the nation safer: the role of science and technology in countering terrorism. National Academies Press, Washington
OpenNLP (2017) OpenNLP. http://opennlp.apache.org. Accessed 30 Sept 2018
Palantir Gotham (2007) www.palantir.com/palantir-gotham/. Accessed 30 Sept 2018
Park M-H, Hong J-H, Cho S-B (2007) Location-based recommendation system using Bayesian user’s preference model in mobile devices. In: UIC, vol 4611, pp 1130–1139. https://doi.org/10.1007/978-3-540-73549-6_110
Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. BMVC 1(3):6
Petz G, Karpowicz M, Fürschuß H, Auinger A, Stříteskỳ V, Holzinger A (2014) Computational approaches for mining users opinions on the web 2.0. Inf Process Manag 50(6):899–908
Rahman S, Naim SM, Al Farooq A, Islam MM (2010) Performance of mpeg-7 edge histogram descriptor in face recognition using principal component analysis. In: ICCIT, pp 476–481
Rahman S, Naim SM, Al Farooq A, Islam MM (2012) Combination of gabor and curvelet texture features for face recognition using principal component analysis. IACSIT 4(3):264
Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 815–823
Shahaf D, Guestrin C (2010) Connecting the dots between news articles. In: KDD ’10, pp 623–632
Silva MJ, Martins B, Chaves M, Afonso AP, Cardoso N (2006) Adding geographic scopes to web resources. CEUS 30(4):378–399
Socher R, Fei-Fei L (2010) Connecting modalities: semi-supervised segmentation and annotation of images using unaligned text corpora. In: 2010 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 966–973
Son J-W, Kim A-Y, Park S-B (2013) A location-based news article recommendation with explicit localized semantic analysis. In: SIGIR. https://doi.org/10.1145/2484028.2484064
Stasko J, Görg C, Liu Z (2008) Jigsaw: supporting investigative analysis through interactive visualization. Inf Vis 7(2):118–132
Stone Z, Zickler T, Darrell T (2008) Autotagging facebook: social network context improves photo annotation. In: CVPRW’08. IEEE computer society conference on Computer vision and pattern recognition workshops, 2008. IEEE, pp 1–8
Sun Y, Chen Y, Wang X, Tang X (2014) Deep learning face representation by joint identification–verification. In: Advances in neural information processing systems, pp 1988–1996
Sun Y, Wang X, Tang X (2013) Deep convolutional network cascade for facial point detection. In: CVPR ’13, pp 3476–3483
Szegedy C, Toshev A, Erhan D (2013) Deep neural networks for object detection. In: NIPS
Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: closing the gap to human-level performance in face verification. In: CVPR, pp 1701–1708
Tecuci G, Boicu M, Schum D, Marcu D (2010) Coping with the complexity of intelligence analysis: cognitive assistants for evidence-based reasoning. Technical report, LAC GMU
Tian Y, Liu W, Xiao R, Wen F, Tang X (2007) A face annotation framework with partial clustering and interactive labeling. In: CVPR’07. IEEE, pp 1–8
Turk M, Pentland A (1991) Eigenfaces for recognition. Cogn Neurosci 3(1):71–86. https://doi.org/10.1162/jocn.1991.3.1.71
United States Government (2009) A tradecraft primer: structured analytic techniques for improving intelligence analysis. In: CIA CSI
Valstar M, Martinez B, Binefa X, Pantic M (2010) Facial point detection using boosted regression and graph models. In: CVPR ’10, pp 2729–2736
Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: CVPR
Wang D, Hoi SC, He Y, Zhu J, Mei T, Luo J (2014) Retrieval-based face annotation by weak label regularized local coordinate coding. IEEE Trans Pattern Anal Mach Intell 36(3):550–563
Wu B, Ai H, Huang C, Lao S (2004) Fast rotation invariant multi-view face detection based on real adaboost. In: FG, pp 79–84
Xu J, Lu T-C (2015) Seeing the big picture from microblogs: harnessing social signals for visual event summarization. In: IUI ’15, pp 62–66
Yao BZ, Yang X, Lin L, Lee MW, Zhu S-C (2010) I2T: image parsing to text description. Proc IEEE 98(8):1485–1508
Yong-hong T, Tie-jun H, Wen G (2005) Exploiting multi-context analysis in semantic image classification. JZUS-A 6(11):1268–1283. https://doi.org/10.1007/BF02841665
Zhang K, Zhang Z, Li Z, Qiao Y (2016) Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process Lett 23(10):1499–1503
Acknowledgements
This material is based upon work supported by the U.S. Army Engineering Research and Development Center under Contract No. W9132V-15-C-0006.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kader, M.A., Boedihardjo, A.P. & Hossain, M.S. F2ConText: how to extract holistic contexts of persons of interest for enhancing exploratory analysis. Knowl Inf Syst 61, 363–396 (2019). https://doi.org/10.1007/s10115-018-1304-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10115-018-1304-9