[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Intelligent bus routing with heterogeneous human mobility patterns

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Optimal planning for public transportation is one of the keys helping to bring a sustainable development and a better quality of life in urban areas. Compared to private transportation, public transportation uses road space more efficiently and produces fewer accidents and emissions. However, in many cities people prefer to take private transportation other than public transportation due to the inconvenience of public transportation services. In this paper, we focus on the identification and optimization of flawed region pairs with problematic bus routing to improve utilization efficiency of public transportation services, according to people’s real demand for public transportation. To this end, we first provide an integrated mobility pattern analysis between the location traces of taxicabs and the mobility records in bus transactions. Based on the mobility patterns, we propose a localized transportation mode choice model, with which we can dynamically predict the bus travel demand for different bus routing by taking into account both bus and taxi travel demands. This model is then used for bus routing optimization which aims to convert as many people from private transportation to public transportation as possible given budget constraints on the bus route modification. We also leverage the model to identify region pairs with flawed bus routes, which are effectively optimized using our approach. To validate the effectiveness of the proposed methods, extensive studies are performed on real-world data collected in Beijing which contains 19 million taxi trips and 10 million bus trips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. http://www.apta.com.

  2. http://www.bmac.com.cn/.

  3. http://www.bjjtw.gov.cn/.

  4. http://www.bjjtw.gov.cn/.

References

  1. Ahuja RK (1993) Network flows. PhD Thesis, Technische Hochschule Darmstadt

  2. Bagloee SA, Ceder AA (2011) Transit-network design methodology for actual-size road networks. Trans Res Part B Methodol 45(10):1787–1804

    Article  Google Scholar 

  3. Agarwal A (2004) A comparison of weekend and weekday travel behavior characteristics in urban areas. PhD Thesis, USF

  4. Aslam J, Lim S, Pan X, Rus D (2012) City-scale traffic estimation from a roving sensor network. In: Proceedings of the 10th ACM conference on embedded network sensor systems. ACM, pp 141–154

  5. Aurenhammer F (1991) Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Comput Surv 23(3):345–405

    Article  Google Scholar 

  6. Bastani F, Huang Y, Xie X, Powell JW (2011) A greener transportation mode: flexible routes discovery from GPS trajectory data. In: GIS. ACM, pp 405–408

  7. Beirão G, Cabral JAS (2007) Understanding attitudes towards public transport and private car: a qualitative study. Transp Policy 14(6):478–489

    Article  Google Scholar 

  8. Borzsony S, Kossmann D, Stocker K (2001) The skyline operator. In: 17th international conference on data engineering, 2001. Proceedings. IEEE, pp 421–430

  9. Ceder A (2007) Public transit planning and operation: theory, modeling and practice. Elsevier, Butterworth-Heinemann, Oxford

    Google Scholar 

  10. Ceder A, Wilson NHM (1986) Bus network design. Transp Res Part B Methodol 20(4):331–344

    Article  Google Scholar 

  11. Chakroborty P (2003) Genetic algorithms for optimal urban transit network design. Comput Aided Civ Infrastruct Eng 18(3):184–200

    Article  Google Scholar 

  12. Chakroborty P, Wivedi T (2002) Optimal route network design for transit systems using genetic algorithms. Eng Optim 34(1):83–100

    Article  Google Scholar 

  13. Chen C, Zhang D, Zhou Z-H, Li N, Atmaca T, Li S (2013) B-planner: night bus route planning using large-scale taxi GPS traces. In: PerCom. IEEE, pp 225–233

  14. de Dios Ortuzar J, Willumsen LG (2011) Modelling transport, Wiley press

  15. de Montjoye Y-A, Hidalgo CA, Verleysen M, Blondel VD (2013) Unique in the crowd: the privacy bounds of human mobility. Sci Rep 3(1376):1–5

    Google Scholar 

  16. Fan W, Machemehl RB (2006) Optimal transit route network design problem with variable transit demand: genetic algorithm approach. J Transp Eng 132(1):40–51

    Article  Google Scholar 

  17. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  18. Ge Y, Xiong H, Tuzhilin A, Xiao K, Gruteser M, Pazzani M (2010) An energy-efficient mobile recommender system. In: KDD, pp 899–908

  19. Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 330–339

  20. Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782

    Article  Google Scholar 

  21. Guihaire V, Hao J-K (2008) Transit network design and scheduling: a global review. Transp Res Part A Policy Pract 42(10):1251–1273

    Article  Google Scholar 

  22. Kepaptsoglou K, Karlaftis M (2009) Transit route network design problem: review. J Transp Eng 135(8):491–505

    Article  Google Scholar 

  23. Kim S, Shekhar S, Min M (2008) Contraflow transportation network reconfiguration for evacuation route planning. IEEE Trans Knowl Data Eng 20(8):1115–1129

    Article  Google Scholar 

  24. Land AH, Doig AG (1960) An automatic method of solving discrete programming problems. Econometrica 28(3):497–520

    Article  MathSciNet  MATH  Google Scholar 

  25. Lathia N, Capra L (2011) Mining mobility data to minimise travellers’ spending on public transport. In: KDD. ACM, pp 1181–1189

  26. Lathia N, Froehlich J, Capra L (2010) Mining public transport usage for personalised intelligent transport systems. In: ICDM, pp 887–892

  27. Liu C-L, Pai T-W, Chang C-T, Hsieh C-M (2001) Path-planning algorithms for public transportation systems. In: Proceedings. 2001 IEEE intelligent transportation systems. IEEE, pp 1061–1066

  28. Liu L, Hou A, Biderman A, Ratti C, Chen J (2009) Understanding individual and collective mobility patterns from smart card records: a case study in shenzhen. In: ITSC. IEEE, pp 1–6

  29. Liu Y, Liu C, Yuan NJ, Duan L, Fu Y, Xiong H, Xu S, Wu J (2014) Exploiting heterogeneous human mobility patterns for intelligent bus routing. In: ICDM. IEEE, pp 360–369

  30. Manning CD, Schütze H (1999) Foundations of statistical natural language processing. MIT Press, Cambridge

    MATH  Google Scholar 

  31. Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 637–646

  32. Pratt RH, Evans IV et al (2004) Traveler response to transportation system changes. Chapter 10, Bus routing and coverage

  33. Redman L, Friman M, Gärling T, Hartig T (2013) Quality attributes of public transport that attract car users: a research review. Transp Policy 25:119–127

    Article  Google Scholar 

  34. Song C, Zehui Q, Blumm N, Barabási A-L (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021

    Article  MathSciNet  MATH  Google Scholar 

  35. Tilo S (2010) Data fitting and uncertainty: a practical introduction to weighted least squares and beyond. Vieweg, Teubner, Wiesbaden. ISBN:3834810223

  36. Sun JB, Yuan J, Wang Y, Si HB, Shan XM (2011) Exploring space–time structure of human mobility in urban space. Phys A 390(5):929–942

    Article  Google Scholar 

  37. Utsunomiya M, Attanucci J, Wilson N (2006) Potential uses of transit smart card registration and transaction data to improve transit planning. Trans Res Rec 1971(1):119–126

    Article  Google Scholar 

  38. Watkins KE, Ferris B, Borning A, Rutherford GS, Layton D (2011) Where is my bus? Impact of mobile real-time information on the perceived and actual wait time of transit riders. Trans Res Part A Policy Pract 45(8):839–848

    Article  Google Scholar 

  39. Yen JY (1971) Finding the k shortest loopless paths in a network. Manag Sci 17(11):712–716

    Article  MathSciNet  MATH  Google Scholar 

  40. Yuan J, Zheng Y, Xie X (2012) Discovering regions of different functions in a city using human mobility and pois. In: KDD. ACM, pp 186–194

  41. Yuan J, Zheng Y, Xie X, Sun G (2013) T-drive: enhancing driving directions with taxi drivers’ intelligence. IEEE Trans Knowl Data Eng 25(1):220–232

    Article  Google Scholar 

  42. Yuan NJ, Wang Y, Zhang F, Xie X, Sun G (2013) Reconstructing individual mobility from smart card transactions: a space alignment approach. In: ICDM, pp 877–886

  43. Zheng Y, Liu Y, Yuan J, Xie X (2011) Urban computing with taxicabs. In: Proceedings of the 13th international conference on Ubiquitous computing. ACM, pp 89–98

Download references

Acknowledgments

We thank anonymous reviewers for their very useful comments and suggestions. This research was supported in part by Natural Science Foundation of China (71329201, 71322104, 71531001), the Rutgers 2015 Chancellor’s Seed Grant Program, National High Technology Research and Development Program of China (SS2014AA012303), and the Fundamental Research Funds for the Central Universities. A preliminary version of this work has been accepted for publication as a regular paper in ICDM 2014 [29].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, C., Yuan, N.J. et al. Intelligent bus routing with heterogeneous human mobility patterns. Knowl Inf Syst 50, 383–415 (2017). https://doi.org/10.1007/s10115-016-0948-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-016-0948-6

Keywords

Navigation