[go: up one dir, main page]

Skip to main content
Log in

Robust smoothed analysis of a condition number for linear programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We perform a smoothed analysis of the GCC-condition number \({\fancyscript{C}(A)}\) of the linear programming feasibility problem \({\exists x\in\mathbb{R}^{m+1}\,Ax < 0}\). Suppose that \({\bar{A}}\) is any matrix with rows \({\overline{a}_i}\) of euclidean norm 1 and, independently for all i, let a i be a random perturbation of \({\overline{a}_i}\) following the uniform distribution in the spherical disk in S m of angular radius arcsin σ and centered at \({\overline{a}_i}\). We prove that \({\mathbb{E}({\rm ln}\,\fancyscript{C}(A)) =\mathcal{O} (mn/\sigma)}\). A similar result was shown for Renegar’s condition number and Gaussian perturbations by Dunagan et al. (Math Program Ser A, 2009). Our result is robust in the sense that it easily extends to radially symmetric probability distributions supported on a spherical disk of radius arcsin σ, whose density may even have a singularity at the center of the perturbation. Our proofs combine ideas from a recent paper of Bürgisser et al. (Math Comp 77(263), 2008) with techniques of Dunagan et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allendoerfer C.B.: Steiner’s formulae on a general S n+1. Bull. Amer. Math. Soc. 54, 128–135 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball K.: The reverse isoperimetric problem for Gaussian measure. Discret. Comput. Geom. 10(4), 411–420 (1993)

    Article  MATH  Google Scholar 

  3. Bonnesen, T., Fenchel, W.: Theorie der konvexen Körper. Springer, Berlin, Berichtigter Reprint (1974)

  4. Bürgisser, P.: Smoothed analysis of condition numbers. In: Foundations of Computational Mathematics, Hong Kong 2008, pp. 1–41. Cambridge University Press, Cambridge (2009)

  5. Bürgisser P., Cucker F., Lotz M.: Coverage processes on spheres and condition numbers for linear programming. Ann. Probab. 38(2), 570–604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bürgisser P., Cucker F., Lotz M.: Smoothed analysis of complex conic condition numbers. J. Math. Pures et Appl. 86, 293–309 (2006)

    Article  MATH  Google Scholar 

  7. Bürgisser P., Cucker F., Lotz M.: The probability that a slightly perturbed numerical analysis problem is difficult. Math. Comput. 77(263), 1559–1583 (2008)

    Article  MATH  Google Scholar 

  8. Cheung D., Cucker F.: A new condition number for linear programming. Math. Program. 91(1, Ser. A), 163–174 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Cheung D., Cucker F.: Probabilistic analysis of condition numbers for linear programming. J. Optim. Theor. Appl. 114, 55–67 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheung D., Cucker F., Hauser R.: Tail decay and moment estimates of a condition number for random linear conic systems. SIAM J. Optim. 15(4), 1237–1261 (2005) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cucker, F., Hauser, R., Lotz, M.: Adversarial smoothed analysis. To appear in J. Complexity

  12. Cucker, F., Peña, J.: A primal-dual algorithm for solving polyhedral conic systems with a finite-precision machine. SIAM J. Optim. 12(2), 522–554 (electronic) (2001/02)

    Google Scholar 

  13. Cucker F., Wschebor M.: On the expected condition number of linear programming problems. Numer. Math. 94, 419–478 (2002)

    Article  MathSciNet  Google Scholar 

  14. Demmel J.: The probability that a numerical analysis problem is difficult. Math. Comput. 50, 449–480 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dunagan, J., Spielman, D.A., Teng, S.-H.: Smoothed analysis of condition numbers and complexity implications for linear programming. Math. Program. Ser. A (2009). doi:10.1007/s10107-009-0278-5

  16. Glasauer, S.: Integralgeometrie konvexer Körper im sphärischen Raum. PhD thesis, Universität Freiburg im Br. (1995)

  17. Goffin J.-L.: The relaxation method for solving systems of linear inequalities. Math. Oper. Res. 5(3), 388–414 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hauser R., Müller T.: Conditioning of random conic systems under a general family of input distributions. Found. Comput. Math. 9(3), 335–358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Howard R.: The kinematic formula in Riemannian homogeneous spaces. Mem. Amer. Math. Soc. 106(509), vi+69 (1993)

    Google Scholar 

  20. Renegar J.: Some perturbation theory for linear programming. Math. Program. 65(1, Ser. A), 73–91 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Renegar J.: Incorporating condition measures into the complexity theory of linear programming. SIAM J. Optim. 5(3), 506–524 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Renegar J.: Linear programming, complexity theory and elementary functional analysis. Math. Program. 70(3, Ser. A), 279–351 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sankar A., Spielman D.A., Teng S.H.: Smoothed analysis of the condition numbers and growth factors of matrices. SIAM J. Matrix Anal. Appl. 28(2), 446–476 (2006) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schneider R.: Smooth approximation of convex bodies. Rend. Circ. Mat. Palermo (2) 33(3), 436–440 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Smale S.: Complexity theory and numerical analysis. In: Iserles, A. (eds) Acta Numerica, pp. 523–551. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  26. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms. In: Proceedings of the International Congress of Mathematicians, vol. I, pp. 597–606 (2002)

  27. Spielman D.A., Teng S.-H.: Smoothed analysis of termination of linear programming algorithms. Math. Programm. Series B 97, 375–404 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Spielman D.A., Teng S.-H.: Smoothed analysis: Why the simplex algorithm usually takes polynomial time. J. ACM 51, 385–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Spivak M.: A comprehensive introduction to differential geometry, Vol III. 2nd edn. Publish or Perish Inc, Wilmington, Del (1979)

    MATH  Google Scholar 

  30. Webster R.: Convexity. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1994)

    MATH  Google Scholar 

  31. Wendel J.G.: A problem in geometric probability. Math. Scand. 11, 109–111 (1962)

    MathSciNet  MATH  Google Scholar 

  32. Weyl H.: On the volume of tubes. Am. J. Math. 61(2), 461–472 (1939)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bürgisser.

Additional information

P. Bürgisser and D. Amelunxen are partially supported by DFG grant BU 1371/2-1 and DFG Research Training Group on Scientific Computation GRK 693 (PaSCo GK).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürgisser, P., Amelunxen, D. Robust smoothed analysis of a condition number for linear programming. Math. Program. 131, 221–251 (2012). https://doi.org/10.1007/s10107-010-0346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0346-x

Keywords

Mathematics Subject Classification (2000)

Navigation