Abstract
Femtosecond pulsed lasers are widely used in applied technologies, such as laser processing, nonlinear optical microscopy, and time-of-flight measurement, wherein narrowing the pulse duration is particularly important for improving the processing efficiency and signal-to-noise ratio of measurement systems. This paper proposes a method for shortening temporal pulse waveforms using spectral intensity filtering. Symmetrical spectral filtering was specifically applied at the central wavelength of the femtosecond pulsed laser spectrum. To investigate the pulse-narrowing effect, we numerically simulated the pulse duration as a function of the filtering width and cut-off wavelength position. The results of these simulations showed that the pulse duration decreased as the filter wavelength approached the central wavelength of the light. Furthermore, increasing the filter width reduced the pulse duration. Additionally, we implemented a spatial light modulator-based pulse-shaping system to realize a spectral intensity filter. We experimentally demonstrated that the duration of a telecom-band pulse was reduced by 9.8% when using a spectral intensity filter with a width of 1 nm.








Similar content being viewed by others
References
Gunaratne, T.C., Zhu, X., Lozovoy, V.V., Dantus, M.: Influence of the temporal shape of femtosecond pulses on silicon micromachining. J. Appl. Phys. 106, 123101 (2009)
Hernandez-Rueda, J., Siegel, J., Galvan-Sosa, M., Ruiz de la Cruz, A., Garcia-Lechuga, M., Solis, J.: Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses. J. Opt. Soc. Am. 32(1), 150–156 (2015)
Zhu, X., Gunaratne, T.C., Lozovoy, V.V., Dantus, M.: In-situ femtosecond laser pulse characterization and compression during micromachining. Opt. Express 15(24), 16061–16066 (2007)
Nie, B., Saytashev, I., Chong, A., Liu, H., Arkhipov, S.N., Wise, F.W., Dantus, M.: Multimodal microscopy with sub-30 fs Yb fiber laser oscillator. Biomed. Opt. Express 3, 1750–1756 (2012)
Liang, X., Hu, W., Fu, L.: Pulse compression in two-photon excitation fluorescence microscopy. Opt. Express 18(14), 14893–14904 (2010)
Fernández, A., Grüner-Nielsen, L., Andreana, M., Stadler, M., Kirchberger, S., Sturtzel, C., Distel, M., Zhu, L., Kautek, W., Leitgeb, R., Baltuska, A., Jespersen, K., Verhoef, A.: Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy. Biomed. Opt. Express 8(8), 3526–3537 (2017)
Takahashi, H., Watanabe, K., Shigematsu, K., Inoue, T., Satozono, H.: Measurement of group refractive indices of glass using color-selective multi-pulse generated with a spatial light modulator. Opt. Lett. 46, 1534–1537 (2021)
Hentschel, M., Kienberger, R., Spielmann, C., Reider, G.A., Milosevic, N., Brabec, T., Corkum, P., Heinzmann, U., Drescher, M., Krausz, F.: Attosecond metrology. Nature 414(6863), 509–513 (2001)
Takahashi, E.J., Lan, P., Mücke, O.D., Nabekawa, Y., Midorikawa, K.: Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse. Phys. Rev. Lett. 104(23), 233901 (2010)
Takahashi, E.J., Lan, P., Mücke, O.D., Nabekawa, Y., Midorikawa, K.: Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4(1), 2691 (2013)
Xue, B., Tamaru, Y., Fu, Y., Yuan, H., Lan, P., Mücke, O.D., Suda, A., Midorikawa, K., Takahashi, E.J.: Fully stabilized multi-TW optical waveform synthesizer: toward gigawatt isolated attosecond pulses. Sci. Adv. 6(16), 2802 (2020)
Weiner, A.M.: Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000)
Weiner, A.M., Leaird, D.E., Patel, J.S., Wullert, J.R.: Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. Opt. Lett. 15(6), 326–328 (1990)
Baumert, T., Brixner, T., Seyfried, V., Strehle, M., Gerber, G.: Femtosecond pulse shaping by an evolutionary algorithm with feedback. Appl. Phys. B 65, 779–782 (1997)
Yelin, D., Meshulach, D., Silberberg, Y.: Adaptive femtosecond pulse compression. Opt. Lett. 22(23), 1793–1795 (1997)
Matsumoto, N., Konno, A., Inoue, T., Watanabe, K., Okazaki, S.: Amplitude-modulation-type multi-ring mask for two-photon excitation scanning microscopy. OSA Contin. 4(6), 1696–1711 (2021)
Oketani, R., Doi, A., Smith, N.I., Nawa, Y., Kawata, S., Fujita, K.: Saturated two-photon excitation fluorescence microscopy with core-ring illumination. Opt. Lett. 42(3), 571–574 (2017)
Hell, S.W., Hänninen, P.E., Kuusisto, A., Schrader, M., Soini, E.: Annular aperture two-photon excitation microscopy. Opt. Commun. 117(1–2), 20–24 (1995)
Corral, M.M., Andrés, P., Rodrguez, C.J.Z., Kowalczyk, M.: Three-dimensional superresolution by annular binary filters. Opt. Commun. 165(4–6), 267–278 (1999)
Watanabe, K., Inoue, T.: Energy adjustment pulse shaping algorithm part I: accuracy improvement of phase retrieval IFTA. Opt. Express 28(10), 14807–14814 (2020)
Watanabe, K., Inoue, T.: Energy adjustment pulse shaping algorithm part II: realization of a spectral intensity design. Opt. Express 28(10), 14815–14823 (2020)
Katilius, E., Neal, W.W.: Multiphoton excitation of fluorescent DNA base analogs. J. Biomed. Opt. 11(4), 004004 (2006)
Liangjia, Z.: Reliable chromatic dispersion measurement method for installed optical fibers. Appl. Opt. 54(26), 79730–87977 (2015)
Hult, J., Watt, R.S., Kaminski, C.F.: Dispersion measurement in optical fibres using supercontinuum pulses. J. Light. Technol. 25(3), 820–824 (2007)
Moon, S., Kim, D.Y.: Reflectometric fiber dispersion measurement using a supercontinuum pulse source. IEEE Photon. Technol. Lett. 21(17), 1262–1264 (2009)
Zhang, S., Zou, X., Zhang, Y., Zhang, X., Liu, Y.: Precise measurement of fiber dispersion based on phase-modulated signal fading. Microw. Opt. Technol. Lett. 56(2), 427–430 (2014)
Baker, C., Lu, Y., Bao, X.: Chromatic-dispersion measurement by modulation phase-shift method using a kerr phase-interrogator. Opt. Express 22(19), 22314–22319 (2014)
Hlubina, P., Kadulova, M., Mergo, P.: Chromatic dispersion measurement of holey fibres using a supercontinuum source and a dispersion balanced interferometer. Opt. Lasers Eng. 51(4), 421–425 (2013)
Frumker, E., Silberberg, Y.: Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators. J. Opt. Soc. Am. B 24(12), 2940–2947 (2007)
Frumker, E., Silberberg, Y.: Two-dimensional phase-only spatial light modulators for dynamic phase and amplitude pulse shaping. J. Mod. Opt. 56(18–19), 2049–2054 (2009)
Vaughan, J.C., Hornung, T., Feurer, T., Nelson, K.A.: Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator. Opt. Lett. 30(3), 323–325 (2005)
Wefers, M.M., Nelson, K.A.: Programmable phase and amplitude femtosecond pulse shaping. Opt. Lett. 18(23), 2032–2034 (1993)
Davis, J.A., Cottrell, D.M., Campos, J., Yzuel, M.J., Moreno, I.: Encoding amplitude information onto phase-only filters. Appl. Opt. 38(23), 5004–5013 (1999)
Ando, T., Ohtake, Y., Matsumoto, N., Inoue, T., Fukuchi, N.: Mode purities of Laguerre–Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators. Opt. Lett. 34(1), 34–36 (2009)
Funding
This work was supported by JSPS KAKENHI (Grant Number JP23K04625).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest associated with this manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Watanabe, K., Takahashi, H., Shigematsu, K. et al. Compression of femtosecond-pulse waveforms in spectral intensity filters. Opt Rev 31, 236–241 (2024). https://doi.org/10.1007/s10043-024-00866-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10043-024-00866-8