[go: up one dir, main page]

Skip to main content
Log in

Estimation of blood concentration at different skin depths using a spectroscopic camera

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

In this research, we propose a method using a spectroscopic camera to estimate the concentration of blood in different layers of skin tissue. For the demonstration that shows the possibility of application of our method, we conducted a stimulation experiment on 20 subjects involving hot or carbonated baths to promote blood circulation, and estimated the blood concentration before and after stimulation. The results indicate the possibility of estimating blood concentration by proposed method based on spectroscopic images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ohshima H, Mizukoshi K, Oyobikawa M et al (2009) Effects of vitamin C on dark circles of the lower eyelids: quantitative evaluation using image analysis and echogram. Skin Res Technol 15:214–217

    Article  Google Scholar 

  2. Mitsuishi T, Shimoda T, Mitsui Y et al (2004) The effects of topical application of phytonadione, retinol and vitamins C and E on infraorbital dark circles and wrinkles of the lower eyelids. J Cosmet Dermatol 3:73–75

    Article  Google Scholar 

  3. Serra M et al (2018) Brightening and improvement of facial skin quality in healthy female subjects with moderate hyperpigmentation or dark spots and moderate facial aging. J Drugs Dermatol 17:1310–1315

    Google Scholar 

  4. BASF Personal Care (2021) https://www.carecreations.basf.com/news-media/photos-and-illustrations/photosandillustrations-detail/2006/1/14/the-skin-s-blood-vessel-system. Accessed 1 Feb 2022

  5. Freitag FM, Cestari TF (2007) What causes dark circles under the eyes. J Cosmet Dermatol 6:211–215

    Article  Google Scholar 

  6. Park SR, Kim HJ, Park HK (2016) Classification by causes of dark circles and appropriate evaluation method of dark circles. Skin Res Technol 22(3):276–283

    Article  Google Scholar 

  7. Meglinski IV, Matcher SJ (2003) Computer simulation of the skin reflectance spectra. Comput Methods Programs Biomed 70:179–186

    Article  Google Scholar 

  8. Nishidate I, Maeda T, Niizeki K et al (2013) Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method. Sensors 13:7902–7915

    Article  Google Scholar 

  9. Shimada M et al (2000) Explanation of human skin color by multiple linear regression analysis based on the Modified Lambert-Beer law. Opt Rev 7:348–352

    Article  Google Scholar 

  10. Hirose M, Tsumura N (2015) Nonlinear estimation of chromophore concentrations, shading and surface reflectance from five band images. In: Proceedings of Color and Imaging Conference, Darmstadt, Germany, pp 161–166.

  11. Omega Wave Co. Ltd. (2021) http://www.omegawave.co.jp/. Accessed 1 Feb 2022

  12. Oharazawa A, Ogino M, Sugahara M (2020) Skin capillary extraction technique based on independent component analysis and Frangi filter using videomicroscopy. Skin Res Technol 26(5):664–670

    Article  Google Scholar 

  13. Zherebtsov E, Dremin V et al (2019) Hyperspectral imaging of human skin aided by artificial neural networks. Biomed Opt Express 10(7):3545–3559

    Article  Google Scholar 

  14. Dremin V et al (2021) Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning. IEEE Trans Med Imaging 40:1207–1216

    Article  Google Scholar 

  15. Doronin A, Fine I, Meglinski I (2011) Assessment of the calibration curve for transmittance pulse-oximetry. Laser Phys 21(11):1972–1977

    Article  Google Scholar 

  16. Dremin V et al (2019) Influence of blood pulsation on diagnostic volume in pulse oximetry and photoplethysmography measurements. Appl Opt 58(34):9398–9405

    Article  Google Scholar 

  17. Wang L, Jacques SL (1992) Monte carlo modeling of light transport in multi-layered tissues in standard C. University of Texas M. D. Anderson Cancer Center, Houston

    Google Scholar 

  18. Iuchi K, Akaho R, Igarachi T, Ojima N, Tsumura N (2019) Estimation of blood concentration in skin layers with different depths. Color Imaging Conf 2019(1):290–294

    Article  Google Scholar 

  19. Iuchi K, Nomura I, Igarashi T, Ojima N, Tsumura N (2020) Estimation of melanin concentration, blood concentration, and oxygen saturation in skin tissue layers with different depths unaffected by shading. Imaging Manip Anal Biomol Cell Tissues XVIII 11243:112430I

    Google Scholar 

  20. Hernandez-Quintanar L, Fabila-Bustos DA, Hernandez-Chavez M, Valor A, Rosa JM, Stolik S (2020) Fiber-optic pulseoximeter for local oxygen saturation determination using a Monte Carlo multi-layer model for calibration. Comput Methods Programs Biomed 187:1055237

    Article  Google Scholar 

  21. Takaaki M, Arakawa N, Takahashi M, Aizu Y (2010) Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model. Opt Rev 17(3):223–229

    Article  Google Scholar 

  22. Tsumura N, Kawabuchi M et al (2000) Mapping pigmentation in human skin from multi-channel visible spectrum image by inverse optical scattering. Technique. J Imaging Sci Technol 45:444–450

    Google Scholar 

  23. Oregon Medical Laser Center, Optical Properties Spectra (2021). http://omlc.org/spectra/

  24. Akaho R, Hirose M, Tsumura N (2018) Evaluation of the robustness of estimating five components from a skin spectral image. Opt Rev 25(2):181–189

    Article  Google Scholar 

  25. Nishimura N, Sugenoya J, Matsumoto T et al (2002) Effects of repeated carbon dioxide-rich water bathing on core temperature, cutaneous blood flow and thermal sensation. Eur J Appl Physiol 87:337–342

    Article  Google Scholar 

  26. Xu FH et al (2009) Immediate physiological changes induced by a carbon dioxide footbath on circulatory and autonomic nervous systems in healthy males. J Jpn Soc Balneol Climatol Phys Med 72:216–228

    Google Scholar 

Download references

Acknowledgements

We thank Karl Embleton, PhD, from Edanz Group (https://en-author-services.edanzgroup.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaito Iuchi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Iuchi, K., Ono, K. et al. Estimation of blood concentration at different skin depths using a spectroscopic camera. Artif Life Robotics 27, 80–89 (2022). https://doi.org/10.1007/s10015-022-00738-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-022-00738-x

Keywords

Navigation