[go: up one dir, main page]

Skip to main content
Log in

Molecular dynamics simulation on miscibility of trans-1,4,5,8-tetranitro-1,4,5,8 -tetraazadecalin (TNAD) with some propellants

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The solubility parameters of TNAD, HMX, RDX, DINA, DNP propellants were predicted by molecular dynamics (MD) simulation in order to evaluate the miscibility of TNAD and the other four propellants. The results show that the order of miscibility is TNAD/DINA > TNAD/DNP > TNAD/RDX > TNAD/HMX from the analysis of miscibility. The densities and binding energies of TNAD/propellants blends were further investigated. The results indicate that the better the miscibility between TNAD and the propellants, the smaller the variation of the density rate. The larger the intermolecular interaction, the better the miscibility between components. The analysis of radial distribution function shows that the main interaction ways between TNAD and other energetic components are short-range interactions.

Based on molecular dynamics (MD) simulation, the binding energy, density, radial distribution function of TNAD/propellants blends were computed in order to evaluate the miscibility of TNAD and some propellants. The results show that the density change rate, binding energy and radial distribution function of TNAD/ propellants blends are generally consistent with the experimental results. The solubility parameters of TNAD, HMX, RDX, DINA, DNP propellants were also predicted by the MD simulations. The results show that the order of miscibility is TNAD/DINA > TNAD/DNP > TNAD/RDX > TNAD/HMX from the analysis of miscibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vogelsanger B (2004) Chemical stability, compatibility and shelf life ofexplosives. Chimia 58:401–408

    Article  CAS  Google Scholar 

  2. Hildebrand JH, Scott RL (1950) The solubility of non-electrodytes. Reinhold, New York

    Google Scholar 

  3. Chang CS, Den TG (1997) Characterization and preparation of three new high energetic materials (TNAD. DNNC and HCO) Huaxue 55(2):89–106

    CAS  Google Scholar 

  4. Willier RL (1983) Propell Explos Pyro 8(3):65–69

    Article  Google Scholar 

  5. Liu MS, Tsai HJ, Den TG (1992) Study on the preparation of highly energetic material trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin. Huoyao Jishu 8(3):1–8

    Google Scholar 

  6. Qiu L, Xiao HM, Zhu WH, Xiao JJ, Zhu W (2006) Ab initio and molecular dynamics studies of crystalline TNAD (trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin). J Phys Chem B 110:10651–10661

    Article  CAS  Google Scholar 

  7. Prabhakaran KV, Bhide NM, Kurian EM (1995) Spectroscopic and thermal studies on 1,4,5 8-tetranitro tetraaza decalin (TNAD) J Thermochem Acta, 249–258

  8. Skare D, Croatia Z (1999) Tendencies in development of new explosives: heterocyclic, benzenoid-aromatic and alicyclic compounds. Kemija u Industriji 48(3):97–102

    CAS  Google Scholar 

  9. Yan QL, Li XJ, Zhang LY, Li JZ, Li HL, Liu ZR (2008) Compatibility study of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials. J HazardMater 160:529–534

    Article  CAS  Google Scholar 

  10. Materials Studio 4.0 (2006) Accelrys, Inc: San Diego, CA

  11. Mader CL (1998) Numerical Modeling of Explosives and Propellants (2nd edn) CRC, Boca Raton

  12. Ou YX, Chen JJ (2005) The High Energy and Density Compounds, 1st edn. National Defense Industry Press, Beijing

    Google Scholar 

  13. Suceska M, Zeman S, Rajic M (2001) Theoretical prediction of TNAZ detonation properties. New trends in rersearch of energetic materials, in: Proceedings of the Fourth Seminar. Pardubice, Czech Republic

  14. http://www.chemnet.com/India/Products/1,4dinitropiperazine/Suppliers-0-0.html

  15. Sun H, Ren P, Fried JR (1998) The COMPASS forcefield: parameterization and validation for polyphosphazenes. Comput Theor Polym Sci 8:229–246

    Article  CAS  Google Scholar 

  16. Sun H (1998) COMPASS: an ab initio forcefield optimized for condensed-phase application-overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  17. Chen XP, Yuan CA, Wong CKL, Zhang GQ (2011) Validation of forcefields in predicting the physical and thermophysical properties of emeraldine base polyaniline. Mol Simulat 37:990–996

    Article  CAS  Google Scholar 

  18. Bunte SW, Sun H (2000) Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field. J Phys Chem B 104(11):2477–2489

    Article  CAS  Google Scholar 

  19. Cui HL, Ji GF, Chen XR, Zhu WH, Zhao F, Wen Y, Wei DQ (2010) First-principle study of high-pressure behavior of solid β-HMX. J Phys Chem A 114:1082–1092

    Article  CAS  Google Scholar 

  20. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393

    Article  CAS  Google Scholar 

  21. Berendsen HJC, Postma JPM, van Gunsteren WF (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  22. Allen MP, Tildesley DJ (1987) Computer Simulation of Liquids. Clarendon, Oxford

    Google Scholar 

  23. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. J Annu Phys 64:253–287

    Article  Google Scholar 

  24. Karasawa N, Goddard WA (1992) Force fields structures and properties of poly(vinylidene fluoride) crystals. Macromolecules 25:7268–7281

    Article  CAS  Google Scholar 

  25. Sun XQ, Fan XW, Ju XH, Xiao HM (2007) Research methods on component compatibility of propellants. Chem Propell Polym Mater 5:30–36

    Google Scholar 

  26. Cady HH, Lanson AC, Cromer DT (1963) The crystal structure of α-HMX and a refinement of the structure of β–HMX. Acta Cryst 16:617–623

    Article  CAS  Google Scholar 

  27. Zhao XP, Liu J, Sun J (2010) The molecular structure and gas formation enthalpy calculation of RDX. Comput Appl Chem 27(7):890–892

    CAS  Google Scholar 

  28. van Krevelen DW, Hoftyzer PJ (1990) Properties of polymers. Elsevier, Amsterdam

    Google Scholar 

  29. Ren YL, Chen SZ (1981) Study on concentrated solution of nitrocellulose- solubility parameters and system compatibility. Chinese J Explos Propell 1:9–16

    Google Scholar 

  30. Xiao JJ, Huang H, Xiao HM (2007) MD simulation study on the mechanical properties of HMX crystals and HMX/F2311 PBXs. Acta Chim Sinica 65:1746–1750

    CAS  Google Scholar 

  31. Radovan T, Alessandro C, Marco F (2004) Computer simulation of polypropylene/organoclay nanocomposites: Characterization of atomic scale structure and prediction of binding energy. Polym 45:8075–8083

    Article  Google Scholar 

  32. Paolo C, Giulio S, Sabrina P (2008) Many-scale molecular simulation for ABS-MM T nanocomposites: upgrading of industrial scraps. Micropor Mesopor Mater 107:169–179

    Article  Google Scholar 

  33. Zhu W, Xiao HM, Zhao F (2007) Molecular dynamics simulation of elastic properties of HMX/TATB composite. Acta Chim Sinica 65:1223–1228

    CAS  Google Scholar 

  34. Subhra M, Golok B, Nando K (1996) Mechanical and dynamic mechanical properties of miscible blends of epoxidized natural rubber and poly(ethylene-co-acrylic acid). Polym 37:5387–5394

    Article  Google Scholar 

  35. Clancy TC, Putz M (2000) Mixing of isotactic and syndiotactic polypropylenes in the melt. Macromolecules 33(25):9452–9463

    Article  CAS  Google Scholar 

  36. Akten ED, Mattice WL (2001) Monte carlo simulation of head-to-head, tail-to-tail polypropylene and its mixing with polyethylene in the melt. Macromolecules 34(10):3389–3395

    Article  CAS  Google Scholar 

  37. Gestoso P, Brisson J (2003) Towards the simulation of poly(vinylphenol)/poly (vinylmethylether) blends by atomistic molecular modeling. Polym 44(8):2321–2329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the funding provided by the Laboratory of Science and Technology on Combustion and Explosion (Grant No. 9140C3501021101) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Xiao-Hong or Ju Xue-Hai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao-Hong, L., Feng-Qi, Z., Si-Yu, X. et al. Molecular dynamics simulation on miscibility of trans-1,4,5,8-tetranitro-1,4,5,8 -tetraazadecalin (TNAD) with some propellants. J Mol Model 19, 2391–2397 (2013). https://doi.org/10.1007/s00894-013-1786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1786-z

Keywords

Navigation