[go: up one dir, main page]

Skip to main content
Log in

The spherical design algorithm in the numerical simulation of biological tissues with statistical fibre-reinforcement

  • S.I.: MNB 2015
  • Published:
Computing and Visualization in Science

Abstract

Nowadays, the description of complex physical systems, such as biological tissues, calls for highly detailed and accurate mathematical models. These, in turn, necessitate increasingly elaborate numerical methods as well as dedicated algorithms capable of resolving each detail which they account for. Especially when commercial software is used, the performance of the algorithms coded by the user must be tested and carefully assessed. In Computational Biomechanics, the Spherical Design Algorithm (SDA) is a widely used algorithm to model biological tissues that, like articular cartilage, are described as composites reinforced by statistically oriented collagen fibres. The purpose of the present work is to analyse the performances of the SDA, which we implement in a commercial software for several sets of integration points (referred to as “spherical designs”), and compare the results with those determined by using an appropriate set of points proposed in this manuscript. As terms for comparison we take the results obtained by employing the integration scheme Integral, available in Matlab\(^{{\textregistered }}\). For the numerical simulations, we study a well-documented benchmark test on articular cartilage, known as ‘unconfined compression test’. The reported numerical results highlight the influence of the fibres on the elasticity and permeability of this tissue. Moreover, some technical issues of the SDA (such as the choice of the quadrature points and their position in the integration domain) are proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  2. Aspden, R.M., Hukins, D.W.L.: Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function. Proc. R. Soc. B 212, 299–304 (1981)

    Article  Google Scholar 

  3. Ateshian, G.A.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6, 423–445 (2007)

    Article  Google Scholar 

  4. Ateshian, G.A., Weiss, J.A.: Anisotropic hydraulic permeability under finite deformation. J. Biomech. Eng. 132, 111004-1–111004-7 (2010)

    Google Scholar 

  5. Baaijens, F., Bouten, C., Driessen, N.: Modeling collagen remodeling. J. Biomech. 43, 166–175 (2010)

    Article  Google Scholar 

  6. Bažant, P., Oh, B.H.: Efficient numerical integration on the surface of a hemisphere. ZAMM Z. Angew. Math. Mech. J. Appl. Math. Mech. 66(1), 37–49 (1986)

    Article  MATH  Google Scholar 

  7. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer, Dordrecht, Boston, London (1990)

    Book  MATH  Google Scholar 

  8. Beentjes C.H.L.: Quadrature on a spherical surface. Technical Report, University of Oxford (2015)

  9. Bennethum, L.S., Murad, M.A., Cushman, J.H.: Macroscale thermodynamics and the chemical potential for swelling porous media. Transp. Porous Media 39, 187–225 (2000)

    Article  MathSciNet  Google Scholar 

  10. Bennethum, L.S., Giorgi, T.: Generalized Forchheimer equation for two-phase flow based on hybrid mixture theory. Transp. Porous Media 26, 261–275 (1997)

    Article  Google Scholar 

  11. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  12. Brauchart, J.S., Grabner, P.: Distributing many points on the spheres: minimal energy and designs. J. Complex. 31, 293–326 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Byrne, H.M., Preziosi, L.: Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2004)

    Article  MATH  Google Scholar 

  14. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6, 363–388 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. Federico, S., Grillo, A.: Linear elastic composites with statistically oriented spheroidal inclusions. In: Meguid, S.A., Weng, G.J. (eds) A Book Chapter in Advances in Micromechanics and Nanomechanics of Composite Solids. Springer (2017). doi:10.1007/978-3-319-52794-9_11

  16. Federico, S.: Porous materials with statistically oriented reinforcing fibres. In: Dorfmann, L., Ogden, R.W. (eds.) Nonlinear Mechanics of Soft Fibrous Materials, pp. 49–120, Springer, Berlin, Germany, 2015. CISM Courses and Lectures No. 559, International Centre for Mechanical Sciences

  17. Federico, S., Grillo, A., La Rosa, G., Giaquinta, G., Herzog, W.: A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage. J. Biomech. 38, 2008–2018 (2005)

    Article  Google Scholar 

  18. Federico, S., Gasser, T.C.: Nonlinear elasticity of biological tissues with statistical fibre orientation. J. R. Soc. Interface 7, 955–966 (2010)

    Article  Google Scholar 

  19. Federico, S., Grillo, A.: Elasticity and permeability of porous fibre-reinforced materials under large deformations. Mech. Mat. 44, 58–71 (2012)

    Article  Google Scholar 

  20. Federico, S., Herzog, W.: On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech. Model. Mechanobiol. 7, 367–378 (2008)

    Article  Google Scholar 

  21. Federico, S., Herzog, W.: Towards an analytical model of soft biological tissues. J. Biomech. 41, 3309–3313 (2008)

    Article  Google Scholar 

  22. Federico, S., Herzog, W.: On the permeability of fibre-reinforced porous materials. Int. J. Solids Struct. 45, 2160–2172 (2008)

    Article  MATH  Google Scholar 

  23. Garikipati, K., Arruda, E.M., Grosh, K., Narayanan, H., Calve, S.: A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  25. Grillo, A., Zingali, G., Borrello, D., Federico, S., Herzog, W., Giaquinta, G.: A multiscale description of growth and transport in biological tissues. Theor. Appl. Mech. 34(1), 51–87 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Grillo, A., Federico, S., Wittum, G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Non Linear Mech. 47, 388–401 (2012)

    Article  Google Scholar 

  27. Grillo, A., Giverso, C., Favino, M., Krause, R., Lampe, M., Wittum, G.: Mass transport in porous media with variable mass. In: Delgado, J.M.P.Q., de Lima, A.G.B., da Silva, M.V. (eds.) Numerical Analysis of Heat and Mass Transfer in Porous Media-Advanced and Structural Materials, pp. 27–61. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  28. Grillo, A., Carfagna, C., Federico, S.: The Darcy–Forchheimer law for modelling fluid flow in biological tissues. Theort. Appl. Mech. TEOPM7 41(4), 283–322 (2014)

    Article  MATH  Google Scholar 

  29. Grillo, A., Guaily, A., Giverso, C., Federico, S.: Non-linear model for compression tests on articular cartilage. J. Biomech. Eng. 137, 071004-1–071004-8 (2015)

    Article  Google Scholar 

  30. Grillo, A., Wittum, G., Tomic, A., Federico, S.: Remodelling in statistically oriented fibre-reinforced materials and biological tissues. Math. Mech. Solids 20(9), 1107–1129 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  31. Grillo, A., Prohl, R., Wittum, G.: A poroplastic model of structural reorganisation in porous media of biomechanical interest. Contin. Mech. Thermodyn. 28, 579–601 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  32. Guilak, F., Ratcliffe, A., Mow, V.C.: Chondrocyte deformation and local tissue straining articular cartilage: a confocal microscopy study. J. Orthopaedic Res. 13, 410–421 (1995)

    Article  Google Scholar 

  33. Hardin, R.H., Sloane, N.J.A.: McLaren’s improved Snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom. 15, 429–441 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hashlamoun, K., Grillo, A., Federico, S.: Efficient evaluation of the material response of tissues reinforced by statistically oriented fibres. Z. Angew. Math. Phys. 67(113), 2016 (2016). doi:10.1007/s00033-016-0704-5

    MATH  MathSciNet  Google Scholar 

  35. Hassanizadeh, M.S.: Derivation of basic equations of mass transport in porous media. Part II. Generalized Darcy’s and Fick’s Laws. Adv. Water Resour. 9, 208–222 (1986)

    Google Scholar 

  36. Holmes, M.H., Mow, V.C.: The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23, 1145–1156 (1990)

    Article  Google Scholar 

  37. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial layers with distributed collagen fibre orientations. J. Elast. 61, 1–48 (2000)

    Article  Google Scholar 

  38. http://neilSloane.com/sphdesigns/dim3/

  39. Huyghe, J.M., Van Loon, R., Baaijens, F.T.P.: Fluid-solid mixtures and electrochemomechanics: the simplicity of Lagrangian mixture theory. Comput. Appl. Math. 23(2–3), 235–258 (2004)

    MATH  MathSciNet  Google Scholar 

  40. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press (1996). ISBN 978-0-521-55655-2

  41. Klisch, S.M., Chen, S.S., Sah, R.L., Hoger, A.: A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants. J. Biomech. Eng. 125, 169–179 (2003)

    Article  Google Scholar 

  42. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1960)

    MATH  Google Scholar 

  43. Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1–12 (1983)

    Article  Google Scholar 

  44. Lebedev, V.I.: Quadratures on a sphere. USSR Comput. Math. Math. Phys. 16(2), 10–24 (1976)

  45. Loret, B., Simões, F.M.F.: A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. Eur. J. Mech. A Solids 24, 757–781 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  46. Mansour, J.M.: Biomechanics of cartilage, Chapter 5, pp. 66–67. In: Oatis, C.A. (ed.) Kinesiology: The Mechanics and Pathomechanics of Human Movement. Lippincott Williams & Wilkins, Philadelphia (2003)

    Google Scholar 

  47. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications Inc., New York (1983)

    MATH  Google Scholar 

  48. McLaughlin, R.: A study of the differential scheme for the composite materials. Int. J. Eng. Sci. 15, 237–244 (1977)

    Article  MATH  Google Scholar 

  49. Menzel, A.: Modelling of anisotropic growth in biological tissues. Biomech. Model Mechanobiol. 3, 147–171 (2005)

    Article  Google Scholar 

  50. Mollenhauer, J., Aurich, M., Muehleman, C., Khelashvilli, G., Irving, T.C.: X-ray diffraction of the molecular substructure of human articular cartilage. Connect. Tissue Res. 44, 201–207 (2003)

    Article  Google Scholar 

  51. Norris, A.N.: A differential scheme for the effective moduli of composites. Mech. Mater. 4, 1–16 (1985)

    Article  Google Scholar 

  52. Pezzuto, S., Ambrosi, D.: Active contraction of the cardiac ventricle and distortion of the microstructural architecture. Int. J. Numer. Methods Biomed. Eng. 30(12), 1578–1596 (2014)

    Article  Google Scholar 

  53. Podzniakov, S., Tsang, C.F.: A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium. Warter Resour. Res. 40, 1–13 (2004)

    Google Scholar 

  54. Quiligotti, S.: On bulk growth mechanics of solid-fluid mixtures: kinematics and invariance requirements. Theor. Appl. Mech. 28, 1–11 (2002)

    MATH  MathSciNet  Google Scholar 

  55. Quiligotti, S., Maugin, G.A., dell’Isola, F.: An Eshelbian approach to the nonlinear mechanics of constrained solid–fluid mixtures. Acta Mech. 160, 45–60 (2003)

    Article  MATH  Google Scholar 

  56. Römgens, A.M., van Donkelaar, C.C., Ito, K.: Contribution of collagen fibres to the compressive stiffness of cartilaginous tissues. Biomech. Model Mechanobiol. 12(6), 1221–1231 (2013)

    Article  Google Scholar 

  57. Skacel, P., Bursa, J.: Numerical implementation of constitutive model for arterial layers with distributed collagen fibre orientations. Comput. Methods Biomech. Biomed. Eng. 18(8), 816–828 (2015)

    Article  Google Scholar 

  58. Tomic, A., Grillo, A., Federico, S.: Poroelastic materials reinforced by statistically oriented fibres–numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79, 1027–1059 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  59. Weisstein, E.W.: Sphere Point Picking. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/SpherePointPicking.html

  60. Wilson, W., Driesseny, N.J.B., van Donkelaar, C.C., Ito, K.: Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr. Cartil. 14, 1196–1202 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfio Grillo.

Additional information

Communicated by Gabriel Wittum.

This work has been partially financed by the Politecnico di Torino and the Fondazione Cassa di Risparmio di Torino in the context of the funding campaign “La Ricerca dei Talenti” (HR Excellence in Research).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carfagna, M., Grillo, A. The spherical design algorithm in the numerical simulation of biological tissues with statistical fibre-reinforcement. Comput. Visual Sci. 18, 157–184 (2017). https://doi.org/10.1007/s00791-017-0278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-017-0278-6

Keywords

Navigation