Abstract
Recommender systems (RSs) represent integral parts of e-commerce platforms for almost two decades now. The recent emergence of mobile context-aware RSs (CARS) contributed in improving the relevance of recommendations derived by “traditional” RSs through adapting them to the situational user context. This article presents the design and implementation aspects of a collaborative filtering-based mobile CARS, which has been integrated in a smart retailing platform that enables location-based search for retail products and services. In addition to user location, the introduced CARS considers several context parameters like time, season, demographic data, consumer behavior, and location history of the user in order to derive more meaningful product recommendations. Our RS has undergone field trials as well as formal laboratory evaluation tests demonstrating higher accuracy and relevance of recommendations compared with two baseline approaches.







Similar content being viewed by others
Notes
Rand index or Rand measure, in statistics, is a measure of the similarity between two data clustering.
References
Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749
Adomavicius G, Tuzhilin A (2011) Context-aware recommender systems. In Recommender systems handbook (pp. 217-253). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85820-3_7
Bourg L et al. (2019) Enhanced buying experiences in smart cities: the SMARTBUY approach. Proceedings of the 2019 European Conference on Ambient Intelligence (AmI’2019): 108-122
Breese JS, Heckerman D, Kadie C (1998) Empirical analysis of predictive algorithms for collaborative filtering. Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI’98): 43–52
Chatzidimitris T et al. (2019) A location history-aware retail product recommender system. Proceedings of the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob’2019): 1-6
Dorotic M, Fok D, Verhoef PC, Bijmolt TH (2011) Do vendors benefit from promotions in a multivendor loyalty program? Mark Lett 22(4):341–356
Gavalas D, Kenteris M (2011) A web-based pervasive recommendation system for mobile tourist guides. Pers Ubiquit Comput 15(7):759–770
Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G (2014) Mobile recommender systems in tourism. J Netw Comput Appl 39:319–333
Gavalas D, Kasapakis V, Konstantopoulos C, Pantziou G, Vathis N (2017) Scenic route planning for tourists. Pers Ubiquit Comput 21(1):137–155
Gunawardana A, Shani G (2015) Evaluating recommender systems. In: Recommender Systems Handbook. Springer, Boston, pp 265–308
Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004) Evaluating collaborative filtering recommender systems. ACM Trans Inf Syst 22(1):5–53
Herzog D, Laß C, Wörndl W (2018) Tourrec: a tourist trip recommender system for individuals and groups. Proceedings of the 12th ACM Conference on Recommender Systems (RecSys’2018): 496-497
Horozov T, Narasimhan N, Vasudevan V (2006) Using location for personalized POI recommendations in mobile environments. Proceedings of the 2006 International Symposium on Applications and the Internet (SAINT’2006): 124-129
Kotkov D, Wang S, Veijalainen J (2016) A survey of serendipity in recommender systems. Knowl-Based Syst 111:180–192
Lawrence RD, Almasi GS, Kotlyar V, Viveros M, Duri SS (2001) Personalization of supermarket product recommendations. In Applications of data mining to electronic commerce (pp. 11-32). Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1627-9_2
Li YM, Chou CL, Lin LF (2014) A social recommender mechanism for location-based group commerce. Inf Sci 274:125–142
Lu J, Wu D, Mao M, Wang W, Zhang G (2015) Recommender system application developments: a survey. Decis Support Syst 74:12–32
Papagelis M, Plexousakis D (2005) Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. Eng Appl Artif Intell 18(7):781–789
Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850
Ricci F (2011) Mobile recommender systems. International Journal of Information Technology and Tourism 12(3):205–231
Ricci F, Rokach L, Shapira B (2011) Introduction to recommender systems handbook. In Recommender systems handbook (pp. 1-35). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85820-3_1
Shi Y, Serdyukov P, Hanjalic A, Larson M (2011) Personalized landmark recommendation based on geotags from photo sharing sites. Proceedings of the 5th International AAAI Conference on Web and Social Media, 622–625
Xiao X, Zheng Y, Luo Q, Xie X (2014) Inferring social ties between users with human location history. J Ambient Intell Humaniz Comput 5(1):3–19
Yang W-S, Cheng HC, Dia JB (2008) A location-aware recommender system for mobile shopping environments. Expert Syst Appl 34(1):437–445
Yu X, Pan A, Tang LA, Li Z, Han J (2011) Geo-friends recommendation in GPS-based cyber-physical social network. International Conference on Advances in Social Networks Analysis and Mining (ASONAM’2011), 361–368
Yuan ST, Tsao YW (2003) A recommendation mechanism for contextualized mobile advertising. Expert Syst Appl 24(4):399–414
Funding
This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK-01572). V. Kasapakis, G. Pantziou and C. Zaroliagis have been partially supported by the EU H2020 Programme under grant agreement no. 687960 (SMARTBUY).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chatzidimitris, T., Gavalas, D., Kasapakis, V. et al. A location history-aware recommender system for smart retail environments. Pers Ubiquit Comput 24, 683–694 (2020). https://doi.org/10.1007/s00779-020-01374-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00779-020-01374-7