[go: up one dir, main page]

Skip to main content
Log in

Interaction between cationic zinc porphyrin and lead ion induced telomeric guanine quadruplexes: evidence for end-stacking

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The interaction between small molecules and telomeric quadruplex DNA has received great attention because of its importance in molecular recognition and anticancer drug design. Using UV/vis absorption titration, thermal melting, circular dichroism spectroscopy, and electrospray ionization mass spectrometry, we examined the formation of lead ion induced guanine quadruplexes (Pb-G4) from oligonucleotide AG3(T2AG3)3 and their interaction with a zinc derivative of 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (Zn-TMPyP). The binding of lead ion to the oligonucleotide was found to have an unusually high affinity and followed a 1:1 stoichiometry, and the resultant Pb-G4 structure was stabilized by Zn-TMPyP binding. Owing to the steric hindrance of the axial ligand of zinc and also the relatively rigid structure of Pb-G4, intercalation of Zn-TMPyP between adjacent guanine quartets is precluded, thus allowing the end-stacking binding mode to be characterized exclusively. In conjunction with a big redshift (more than 8 nm) in the absorption spectrum, we demonstrate that a conservative induced circular dichroism is an important signature for end-stacking of porphyrins on guanine quadruplexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McElligott R, Wellinger RJ (1997) EMBO J 16:3705–3714

    Article  PubMed  CAS  Google Scholar 

  2. Blackburn EH (2001) Cell 106:661–673

    Article  PubMed  CAS  Google Scholar 

  3. Cech TR (2004) Cell 116:273–279

    Article  PubMed  CAS  Google Scholar 

  4. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Corviello GM, Wright WE, Weinrich SL, Shay JW (1994) Science 266:2011–2015

    Article  PubMed  CAS  Google Scholar 

  5. Neidle S, Thurston DE (2005) Nat Rev Cancer 5:285–296

    Article  PubMed  CAS  Google Scholar 

  6. Blasco MA (2005) Nat Rev Genet 6:622–661

    Article  CAS  Google Scholar 

  7. Wheelhouse RT, Sun D, Han H, Han FX, Hurley LH (1998) J Am Chem Soc 120:3261–3262

    Article  CAS  Google Scholar 

  8. Davis JT (2004) Angew Chem Int Ed 43:668–698

    Article  CAS  Google Scholar 

  9. Wang P, Ren L, He H, Liang F, Zhou X, Tan Z (2006) Chembiochem 7:1155–1159

    Article  PubMed  CAS  Google Scholar 

  10. Reed JE, Arnal AA, Neidle S, Vilar R (2006) J Am Chem Soc 128:5992–5993

    Article  PubMed  CAS  Google Scholar 

  11. Dixon IM, Lopez F, Tejera AM, Esteve JP, Blasco MA, Pratviel G, Meunier B (2007) J Am Chem Soc 129:1502–1503

    Article  PubMed  CAS  Google Scholar 

  12. Campbell NH, Parkinson GN, Reszka AP, Neidle S (2008) J Am Chem Soc 130:6722–6724

    Article  PubMed  CAS  Google Scholar 

  13. Parkinson GN, Lee MP, Neidle S (2002) Nature 417:876–880

    Article  PubMed  CAS  Google Scholar 

  14. Smirnov I, Shafer RH (2000) J Mol Biol 296:1–5

    Article  PubMed  CAS  Google Scholar 

  15. Han H, Langley DR, Rangan A, Hurley LH (2001) J Am Chem Soc 123:8902–8913

    Article  PubMed  CAS  Google Scholar 

  16. Wei C, Jia G, Yuan L, Feng Z, Li C (2006) Biochemistry 45:6681–6691

    Article  PubMed  CAS  Google Scholar 

  17. Mita H, Ohyama T, Tanaka Y, Yamamoto Y (2006) Biochemistry 45:6765–6772

    Article  PubMed  CAS  Google Scholar 

  18. Lubitz I, Borovok N, Kotlyar A (2007) Biochemistry 46:12925–12929

    Article  PubMed  CAS  Google Scholar 

  19. Haq I, Trent JO, Chowdhry BZ, Jenkins TC (1999) J Am Chem Soc 121:1768–1779

    Article  CAS  Google Scholar 

  20. Parkinson GN, Ghosh R, Neidle S (2007) Biochemistry 46:2390–2397

    Article  PubMed  CAS  Google Scholar 

  21. Majhi PR, Shafer RH (2006) Biopolymers 82:558–569

    Article  PubMed  CAS  Google Scholar 

  22. Pasternack RF, Gibbs EJ, Villafranca JJ (1983) Biochemistry 22:5409–5417

    Article  PubMed  CAS  Google Scholar 

  23. Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) J Am Chem Soc 128:9963–9970

    Article  PubMed  CAS  Google Scholar 

  24. Rodriguez R, Pantos GD, Gonçalves DPN, Sanders JKM, Balasubramanian S (2007) Angew Chem Int Ed 46:5405–5407

    Article  CAS  Google Scholar 

  25. Gross ML, Vairaman M (2003) J Am Chem Soc 125:42–43

    Article  PubMed  CAS  Google Scholar 

  26. Gabelica V, Rosu F, Witt M, Baykut G, de Pauw E (2005) Rapid Commun Mass Spectrom 19:201–208

    Article  PubMed  CAS  Google Scholar 

  27. Haye SE, Hambright P (1984) Inorg Chem 23:4777–4779

    Article  CAS  Google Scholar 

  28. Enescu M, Steenkeste K, Tfibel F, Fontaine-Aupart MP (2002) Phys Chem Chem Phys 4:6092–6099

    Article  CAS  Google Scholar 

  29. Evans SE, Mendez MA, Turner KB, Keating LR, Grimes RT, Melchoir S, Szalai VA (2007) J Biol Inorg Chem 12:1235–1249

    Article  PubMed  CAS  Google Scholar 

  30. Ren L, Zhang A, Huang J, Wang P, Weng X, Zhang L, Liang F, Tan Z, Zhou X (2007) Chembiochem 8:775–780

    Article  PubMed  CAS  Google Scholar 

  31. Kotch FW, Fettinger JC, Davis JT (2000) Org Lett 2:3277–3280

    Article  PubMed  CAS  Google Scholar 

  32. Lee MPH, Parkinson GN, Hazel P, Neidle S (2007) J Am Chem Soc 129:10106–10107

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by New Century Excellent Talents in University (07–0134), National Natural Science Foundation of China (20603003), the Research Fund for the Doctoral Program of Higher Education (20070141071), and Science Research Foundation of Dalian University of Technology (07014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J., Zhang, S. Interaction between cationic zinc porphyrin and lead ion induced telomeric guanine quadruplexes: evidence for end-stacking. J Biol Inorg Chem 14, 401–407 (2009). https://doi.org/10.1007/s00775-008-0457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0457-5

Keywords

Navigation