[go: up one dir, main page]

Skip to main content
Log in

On the coupling between vegetation and the atmosphere

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Recent studies suggest that vegetation can drive large-scale atmospheric circulations and substantially influence the hydrologic cycle. We present observational evidence to quantify the extent of coupling between vegetation and the overlying atmosphere. Within the context of vegetation–atmospheric interactions, we reanalyze existing climatological data from springtime leaf emergence, emissivity, dew point temperatures, and historical records of precipitation and forest coverage. We construct new rainfall transects based on a robust global climatology. Using isotopic analysis of precipitation, we find that rain in Amazonia comes primarily from large-scale weather systems coupling interior regions to the ocean and is not directly driven by local evaporation. We find that changes in vegetative cover and state influence the temperature and moisture content of the surface and atmospheric boundary layer but are not reflected in observable precipitation changes. This analysis reaffirms the view that changes in precipitation over continental reaches are a product of complex processes only partly influenced but not controlled by local water sources or vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Alcântara C, Silva Dias M, Souza E, Cohen J (2010) Verification of the role of the low level jets in Amazon squall lines. Atmos Res, in press

  • Andréassian V (2004) Waters and forests: from historical controversy to scientific debate. J Hydrol 291:1–27

    Article  Google Scholar 

  • Angelini I (2002) Sources of rainwater in the Amazon. Ph.D. Dissertation, University of Virginia

  • Angelini I, Garstang M, Macko S, Swap R, Stewart D, Cunha H (2003) Isotopic variations and internal storm dynamics in the Amazon Basin. In: Tao W, Adler R (eds) Cloud systems, hurricanes, and the Tropical Rainfall Measuring Mission (TRMM). American Meteorological Society, Boston, pp 81–93

    Google Scholar 

  • Aravena R, Suzuki O, Pena H, Pollastri A, Fuenzalida H, Grilli A (1999) Isotopic composition and origin of the precipitation in northern Chile. Appl Geochem 14:411–422

    Article  Google Scholar 

  • Bariac T, Jusserand C, Mariotti A (1989) Evolution spatio-temporelle de la composition isotopique de l’eau dans le continuum sol-plante-atmosphere. Geochim Cosmochim Acta 54:413–424

    Article  Google Scholar 

  • Bariac T, Dellens E, Gerbaud A, Andre M, Mariotti A (1991) La composition isotopique (18O, 2H) de la vapeur d’eau transpiree: Etude en conditions asservies. Geochim Cosmochim Acta 55:3391–3402

    Article  Google Scholar 

  • Benton GS, Blackburn RT, Snead VW (1950) The role of the atmosphere in the hydrologic cycle. Trans Am Geophysical Union 31:61–73

    Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  • Brandão de Cunha Senna H (1992) Balanço de macro elementos e composição isotopica de uma bacia hidrográfica na Amazônia Central. Ph.D. Dissertation, Universidade de São Paulo, Brazil

  • Brubaker K, Entekhabi D, Eagleson PS (1993) Estimation of continental precipitation recycling. J Clim 6:1077–1089

    Article  Google Scholar 

  • Caird MA, Richards JH, Donovan LA (2007) Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiol 143:4–10

    Article  Google Scholar 

  • Cohen JC, Nobre CA, Silva Dias MAF (1989) Mean distribution and characteristics of the squall lines observed over the Amazon basin. In: Proc. AMS Third Internat. Conf. on Southern Hemisphere Meteorology and Oceanography, Buenos Aires, Argentina, November, pp 205-207

  • Conners V (1991) Equatorial atmospheric weather regimes: their structure and role. Ph.D. Dissertation, University of Virginia

  • D’Almeida C, Vörösmarty CJ, Hurtt GC, Marengo JA, Dingman SL, Keim BD (2007) The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int J Climatol 27:633–647

    Article  Google Scholar 

  • Dall’Olio A, Salati ES, Azevedo CT, Matsui E (1979) Modelo de x fracionamento isotópico da água na Bacia Amazônica (primeria aproximação). Acta Amazonica 9:675–687

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus XVI 4:436–468

    Article  Google Scholar 

  • Eltahir E, Bras R (1994) Precipitation recycling in the Amazon basin. Quart J Roy Met Soc 120:861–880

    Article  Google Scholar 

  • Faure G (1996) Principles of isotope geology, 2nd edn. Wiley, New York

    Google Scholar 

  • Fitzjarrald DR, Acevedo OC, Moore KE (2001) Climatic consequences of leaf presence in the eastern United States. J Clim 14:598–614

    Article  Google Scholar 

  • Fitzjarrald DR, Sakai RK, Moraes OLL, de Oliveira RC, Acevedo OC, Czikowsky MJ, Beldini T (2008) Spatial and temporal rainfall variability near the Amazon Tapajós confluence. J Geophys Res 113:G00B11

    Article  Google Scholar 

  • Flanagan L, Comstock J, Ehleringer J (1991) Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phseolus vulgaris L. Plant Physiol 96:588–596

    Article  Google Scholar 

  • Foster DR (1992) Land-use history (1730-1990) and vegetation dynamics in central New England, USA. J Ecol 80:753–771

    Article  Google Scholar 

  • Foster DR, Motzkin G, Slater B (1998) Land-use history as long-term broad-scale disturbance: regional forest dynamics in central New England. Ecosystems 1:96–119

    Article  Google Scholar 

  • Freedman JM, Fitzjarrald DR, Moore KE, Sakai RK (2001) Boundary layer clouds and vegetation-atmosphere feedbacks. J Clim 14:180–197

    Article  Google Scholar 

  • Garstang M, Fitzjarrald DR (1999) Observations of surface to atmosphere interactions in the tropics. Oxford University Press, New York

    Google Scholar 

  • Garstang M, Massie HL, Halverson J, Greco S, Scala J (1994) Amazon coastal squall lines. Part I: structure and kinematics. Mon Weather Rev 122:608–622

    Article  Google Scholar 

  • Garstang M, Larom D, Raspet R, Lindeque M (1995) Atmospheric controls on elephant communications. J Exp Biol 198:939–951

    Google Scholar 

  • Garstang M, Fitzjarrald D, Fristrup K, Brain C (2005) The daily cycle of low-frequency elephant calls and near-surface atmospheric conditions. Earth Interact 14:1–21

    Article  Google Scholar 

  • Gat J (2000) Atmospheric water balance- the isotopic perspective. Hydrol Proc 14:1357–1369

    Article  Google Scholar 

  • Gedzelman SD, Arnold R (1994) Modeling the isotopic composition of precipitation. J Geophys Res 99:10455–10471

    Article  Google Scholar 

  • Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010) On the origin of continental precipitation. Geophys Res Lett 37:L13804. doi:10.1029/2010GL043712

    Article  Google Scholar 

  • Greco S, Swap R, Garstang M, Ulanski S, Shipman M, Harriss RC, Talbot R, Andreae MO, Artaxo P (1990) Rainfall and surface kinematic conditions over Central Amazonia during ABLE 2B. J Geophys Res 95:17001–17014

    Article  Google Scholar 

  • Greco S, Scala J, Halverson J, Massie HL Jr, Tao W-K, Garstang M (1994) Amazon coastal squall lines: Part II: heat and moisture transports. Mon Weather Rev 122:623–635

    Article  Google Scholar 

  • Gu L, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107:4050

    Article  Google Scholar 

  • Hayden BP (1998) Ecosystem feedbacks on climate at the landscape scale. Phil Trans R Soc Lond 353:5–18

    Article  Google Scholar 

  • Henderson-Sellers A, Gornitz V (1984) Possible climatic impacts of land cover transformations, with particular emphasis on tropical deforestation. Climate Change 6:231–258

    Article  Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry. Springer, Berlin

    Google Scholar 

  • Hulme M (1994) Validation of large-scale precipitation fields in general circulation models. In: Desbois M, Desalmand F (eds) Global precipitation and climate change, NATO ASI series. Springer, Berlin, pp 387–406

    Google Scholar 

  • Keim BD, Fischer MR, Wilson AM (2005) Are there spurious precipitation trends in the United States climate division database? Geophys Res Lett 32:L04702

    Article  Google Scholar 

  • Kousky VE (1979) Frontal influence on Northeast Brazil. Mon Weather Rev 107:1140–1153

    Article  Google Scholar 

  • Kousky VE (1981) Diurnal rainfall variation in northeast Brazil. Mon Weather Rev 108:488–498

    Article  Google Scholar 

  • Legates DR (1987) A climatology of global precipitation. Publ Climatol 40:85

    Google Scholar 

  • Legates DR (1995) Global and terrestrial precipitation: a comparative assessment of existing climatologies. Int J Climatol 15:237–258

    Article  Google Scholar 

  • Legates DR (1997) Comments on “global and terrestrial precipitation: a comparative assessment of existing climatologies”—a reply. Int J Climatol 17:779–783

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gage-corrected, global precipitation. Int J Climatol 10:111–127

    Article  Google Scholar 

  • Leopoldo PR, Franken WK, Villa Nova NA (1995) Real evapotranspiration and transpiration through a tropical rain forest in Central Amazonia as estimated by the water balance method. For Ecol Manage 73:185–195

    Article  Google Scholar 

  • Liebmann B, Allured D (2005) Daily precipitation grids for South America. Bull Am Meteorol Soc 86:1567–1570

    Article  Google Scholar 

  • Mahmood R, Pielke RA Sr, Hubbard KG, Niyogi D, Bonan G, Lawrence P, McNider R, McAlpine C, Etter A, Gameda S, Qian B, Carleton A, Beltran-Przekurat A, Chase T, Quintanar AI, Adegoke JO, Vezhapparambu S, Conner G, Asefi S, Sertel E, Legates DR, Wu Y, Hale R, Frauenfeld OW, Watts A, Shepherd M, Mitra C, Anantharaj VG, Fall S, Lund R, Treviño A, Blanken P, Du J, Chang H-I, Leeper R, Nair US, Dobler S, Deo R, Syktus J (2010) Impacts of land use land cover change on climate and future research priorities. Bull Am Meteorol Soc 91:37–46

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG (2007) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11:1013–1033

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Bai-Lian L (2009) Precipitation on land versus distance from the ocean: evidence for a forest pump of atmospheric moisture. Ecological Complexity 6:302–307

    Article  Google Scholar 

  • Marengo JA (2006) On the hydrological cycle of the Amazon Basin: a historical review and current state-of-the-art. Rev Bras Meteorol 21:1–19

    Google Scholar 

  • Marques J, Santos JM, Nova NAV, Salati E (1977) Precipitable water and water vapor flux between Belém and Manaus. Acta Amazon 7:355–362

    Google Scholar 

  • Matsui E, Salati E, Ribeiro MNG, Reis CM, Tancredi AC, Gat JR (1983) Precipitation in the Central Amazon Basin: the isotopic composition of rain and atmospheric moisture at Belém and Manaus (*). Acta Amazon 13:307–369

    Google Scholar 

  • Meesters AGCA, Dolman AJ, Bruijnzeel LA (2009) Comment on “Biotic pump of atmospheric moisture as driver of the hydrological cycle on land” by A.M. Makarieva and V.G. Gorshkov, Hydrol. Earth Syst. Sci., 11, 1013-1033, 2007. Hydrol Earth Syst Sci 13:1299–1305

    Article  Google Scholar 

  • Molion LC (1979) A climatonomic study of the energy and moisture fluxes of the Amazon Basin with considerations of deforestation effects. Ph.D. Dissertation, University of Wisconsin

  • Molion LC (1987) Micrometeorology of an Amazonian rain forest. In: Dickerson R (ed) The geophysiology of amazonia: vegetation and climate interaction. Wiley, New York, pp 255–272

    Google Scholar 

  • National Research Council (NRC) (2005) Radiative forcing of climate change: expanding the concept and addressing uncertainties. National Academic Press, Washington, D.C., p 208

    Google Scholar 

  • Oki T (2005) The hydrologic cycles and global circulation. In: Anderson MG, McDonnel J (eds) Encyclopedia of hydrological sciences. Wiley, New York, pp 13–22

    Google Scholar 

  • Pielke RA Sr (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39:151–177

    Article  Google Scholar 

  • Pielke RA Sr, Adegoke J, Beltrán-Przekurat A, Hiemstra CA, Lin J, Nair US, Niyogi D, Nobis TE (2007) An overview of regional land-use and land-cover impacts on rainfall. Tellus 59B:587–601

    Google Scholar 

  • Rasmusson EM (1967) Atmospheric water vapor transport and the water balance of North America. 1. Characteristics of the water vapor flux field. Mon Weather Rev 95:403–426

    Article  Google Scholar 

  • Rasmusson EM (1968) Atmospheric water vapor transport and water balance of North America. Mon Weather Rev 96:720–734

    Article  Google Scholar 

  • Rasmusson EM (1971) A study of the hydrology of eastern North America using atmospheric vapor flux data. Mon Weather Rev 99:120–135

    Article  Google Scholar 

  • Robinson GD (1968) Some determinations of atmospheric absorption by measurement of solar radiation from aircraft and at the surface. Quart J Roy Meteor Soc 92:263–269

    Article  Google Scholar 

  • Rogers RR, Yau MK (1989) A short course in cloud physics. Pergamon, New York

    Google Scholar 

  • Salati E (1984) The climatology and hydrology of amazonia. In: Prance GT, Lovejoy TE (eds) Amazonia. Pergamon, London, pp 18–48

    Google Scholar 

  • Salati E (1987) The forest and the hydrological cycle. In: Dickinson RE (ed) The geophysiology of amazonia vegetation and climate interaction. Wiley, New York, pp 273–293

    Google Scholar 

  • Salati E, Marques J (1984) Climatology of the Amazon Region. In: Sioli H (ed) The Amazon: limnology and landscape ecology. Junk, Boston, pp 85–126

    Google Scholar 

  • Salati E, Dall’Olio A, Matsui E, Gat JR (1979) Recycling of water in the Amazon Basin: an isotopic study. Water Resour Res 15:1250–1258

    Article  Google Scholar 

  • Satyamurty P, Anderson de Castro A, Tota J, da Silva E, Gularte L, Manzi AO (2010) Rainfall trends in the Brazilian Amazon Basin in the past eight decades. Theor Appl Climatol 99:139–148

    Article  Google Scholar 

  • Sellers WD, Dryden PS (1967) An investigation of heat transfer from bare soil. Final report: Grant DA-AMC-28-043-66-627, Institute of Atmospheric Physics, University of Arizona, Tucson, AZ

  • Sheil D, Murdiyarso D (2009) How forests attract rain: an examination of a new hypothesis. Bioscience 59:341–347

    Article  Google Scholar 

  • Silva Dias MAF, Ferreira RN (1992) Application of a linear spectral model to the study of Amazonian squall lines during GTE/ABLE 2B. J Geophys Res 97:20405–20419

    Google Scholar 

  • Sodemann H, Schwierz C, Wernli H (2008a) Interannual variability of Greenland winter precipitation sources: lagrangian moisture diagnostic and North Atlantic oscillation influence. J Geophys Res 113:D03107. doi:10.1029/2007JD008503

    Article  Google Scholar 

  • Sodemann H, Masson-Delmotte V, Schwierz C, Vinther BM, Wernli H (2008b) Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic oscillation variability on stable isotopes in precipitation. J Geophys Res 113:D12111. doi:10.1029/2007JD009416

    Article  Google Scholar 

  • Stewart MK (1975) Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes. J Geophys Res 80:1133–1146

    Article  Google Scholar 

  • Stohl A, James P (2004) A lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J Hydrometeorol 5:656–678. doi:10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2

    Article  Google Scholar 

  • Stohl A, James P (2005) A lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between the Earth’s ocean basins and river catchments. J Hydrometeorol 6:961–984. doi:10.1175/JHM470.1

    Article  Google Scholar 

  • Sun W-Y, Orlanski I (1981) Large mesoscale convection and sea breeze circulation: part 1: linear stability analysis. J Atmos Sci 38:1675–1693

    Article  Google Scholar 

  • Swap R, Garstang M, Greco S, Talbot R, Kållberg P (1992) Saharan dust in the Amazon Basin. Tellus 44B:133–149

    Google Scholar 

  • Victoria RL, Martinelli LA, Mortatti J, Richey J (1991) Mechanisms of water recycling in the Amazon Basin: isotopic insights. Ambio 20:384–387

    Google Scholar 

  • Villa Nova NA, Salati E, Matsui E (1976) Estimativa da evapotranspiração na Bacia Amazônica. Acta Amazon 6:215–228

    Google Scholar 

  • Yakir D (1992) Water compartmentalization in plant tissue: isotopic evidence. In: Somero S, Osmond C, Bolis C (eds) Water and Life. Springer, Berlin, pp 205–222

    Google Scholar 

  • Zeng N (1999) Seasonal cycle and interannual variability in the Amazon hydrologic cycle. J Geophys Res 104:9097–9106

    Article  Google Scholar 

Download references

Acknowledgment

We wish to thank David Hondula (University of Virginia) for his assistance with the precipitation transect mapping and Jacqueline Kemper Shuman (University of Virginia) for providing the source maps of Russian vegetation and biomass. We also gratefully acknowledge David Lutz (University of Virginia) for asking the question that set us off onto this particular intellectual path. We thank Mary Morris who assembled the paper including compiling the figures and bibliography and are grateful to the Environment Energy Division of Simpson Weather Associates for their support in producing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isabella M. Angelini or Michael Garstang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelini, I.M., Garstang, M., Davis, R.E. et al. On the coupling between vegetation and the atmosphere. Theor Appl Climatol 105, 243–261 (2011). https://doi.org/10.1007/s00704-010-0377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-010-0377-5

Keywords

Navigation