[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Neurotransmitters and prefrontal cortex–limbic system interactions: implications for plasticity and psychiatric disorders

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The prefrontal cortex (PFC) efferent projections to limbic areas facilitate a top-down control on the execution of goal-directed behaviours. The PFC sends glutamatergic outputs to limbic areas such as the hippocampus and amygdala which in turn modulate the activity of the nucleus accumbens (NAc). Dopamine and acetylcholine neurons in the brainstem and basal forebrain/septal areas, which send outputs to NAc, hippocampus and amygdala, are also regulated by PFC glutamatergic projections, and seem to be of special relevance in modulating motor, emotional and mnemonic functions. Both the physiological and pathological changes in the PFC influence the activity of these limbic areas and the corresponding final-guided behaviours. We revise our most recent studies on PFC–NAc interactions focussed on the role of dopamine and glutamate receptors in the PFC. Specifically, by performing microinjections/microdialysis studies we found that the activation of D2 dopamine receptors and the blockade of glutamate NMDA receptors in the PFC change the release of dopamine and acetylcholine in the NAc. We suggest the possibility that dopamine and glutamate receptors in the PFC could change the activity of dopamine and acetylcholine function in the hippocampus and amygdala. Finally, it is speculated that changes in the function of the PFC, associated with psychiatric disorders or due to environmental-dependent plasticity, can change PFC–limbic system interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aleman A, Kahn RS (2005) Strange feelings: do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog Neurobiol 77:283–298

    PubMed  Google Scholar 

  • Austin MC, Kalivas PW (1988) The effect of cholinergic stimulation in the nucleus accumbens on locomotor behavior. Brain Res 441:209–214

    Article  PubMed  CAS  Google Scholar 

  • Bacon SJ, Headlam AJ, Gabbott PL, Smith AD (1996) Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res 720:211–219

    Article  PubMed  CAS  Google Scholar 

  • Barbelivien A, Herbeaux K, Oberling P, Kelche C, Galani R, Majchrzak M (2006) Environmental enrichment increases responding to contextual cues but decreases overall conditioned fear in the rat. Behav Brain Res 169:231–238

    Article  PubMed  CAS  Google Scholar 

  • Bardo MT, Bowling SL, Rowlett JK, Manderscheid P, Buxton ST, Dwoskin LP (1995) Environmental enrichment attenuates locomotor sensitization, but not in vitro dopamine release, induced by amphetamine. Pharmacol Biochem Behav 51:397–405

    Article  PubMed  CAS  Google Scholar 

  • Berretta S, Pantazopoulos H, Caldera M, Pantazopoulos P, Paré D (2005) Infralimbic cortex activation increases c-fos expression in intercalated neurons of the amygdala. Neuroscience 132:943–953

    Article  PubMed  CAS  Google Scholar 

  • Beyer CE, Steketee JD (1999) Dopamine depletion in the medial prefrontal cortex induces sensitized-like behavioral and neurochemical responses to cocaine. Brain Res 833:133–141

    Article  PubMed  CAS  Google Scholar 

  • Beyer CE, Steketee JD (2000) Intra-medial prefrontal cortex injection of quinpirole, but not SKF 38393, blocks the acute motor-stimulant response to cocaine in the rat. Psychopharmacology 151:211–218

    Article  PubMed  CAS  Google Scholar 

  • Brady AM, O’Donnell P (2004) Dopaminergic modulation of prefrontal cortical input to nucleus accumbens neurons in vivo. J Neurosci 24:1040–1049

    Article  PubMed  CAS  Google Scholar 

  • Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ (2007) Consolidation of fear extintion requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53:871–880

    Article  PubMed  CAS  Google Scholar 

  • Carlsen J, Zaborszky L, Heimer L (1985) Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study. J Comp Neurol 234:155–167

    Article  PubMed  CAS  Google Scholar 

  • Carr DB, Sesack SR (1996) Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol 369:1–15

    Article  PubMed  CAS  Google Scholar 

  • Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20:3864–3873

    PubMed  CAS  Google Scholar 

  • Carr DB, O’Donnell P, Card JP, Sesack SR (1999) Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens. J Neurosci 19:11049–11060

    PubMed  CAS  Google Scholar 

  • Castner SA, Williams GV (2007) Tuning the engine of cognition: a focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn 63:94–122

    Article  PubMed  Google Scholar 

  • Colgin LL, Kubota D, Lynch G (2003) Cholinergic plasticity in the hippocampus. Proc Natl Acad Sci USA 100:2872–2877

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins RJ (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  PubMed  CAS  Google Scholar 

  • de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475

    Article  PubMed  CAS  Google Scholar 

  • de Rover M, Lodder JC, Kits KS, Schoffelmeer AN, Brussaard AB (2002) Cholinergic modulation of nucleus accumbens medium spiny neurons. Eur J Neurosci 16:2279–2290

    Article  PubMed  Google Scholar 

  • Del Arco A, Mora F (2005) Glutamate-dopamine in vivo interaction in the prefrontal cortex modulates the release of dopamine and acetylcholine in the nucleus accumbens of the awake rat. J Neural Transm 112:97–109

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Mora F (2008) Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by glutamate and dopamine in the prefrontal cortex. Pharmacol Biochem Behav 90:226–235

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Segovia G, Fuxe K, Mora F (2003) Changes of dialysate concentrations of glutamate and GABA in the brain: an index of volume transmission mediated actions? J Neurochem 85:23–33

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Shunwei Z, Teraasma A, Mohammed AH, Fuxe K (2004) Hyperactivity to novelty induced by social isolation is not correlated with changes in D2 receptor function and binding in striatum. Psychopharmacology 171:148–155

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Mora F, Mohammed AH, Fuxe K (2007a) Stimulation of D2 receptors in the prefrontal cortex reduces PCP-induced hyperactivity, acetylcholine release and dopamine metabolism in the nucleus accumbens. J Neural Transm 114:185–193

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Segovia G, Canales JJ, Garrido P, De Blas M, García-Verdugo JM, Mora F (2007b) Environmental enrichment reduces the function of D1 dopamine receptors in the prefrontal cortex of the rat. J Neural Transm 114:43–48

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Segovia G, Garrido P, De Blas M, Mora F (2007c) Stress, prefrontal cortex and environmental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats. Behav Brain Res 176:267–273

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Segovia G, Mora F (2008) Blockade of NMDA receptors in the prefrontal cortex increases dopamine and acetylcholine release in the nucleus accumbens and motor activity. Psychopharmacology 201:325–338

    Article  PubMed  CAS  Google Scholar 

  • Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13:3839–3847

    PubMed  CAS  Google Scholar 

  • Egorov AV, Unsicker K, und Halbach O (2006) Muscarinic control of graded persistent activity in lateral amygdala neurons. Eur J Neurosci 24:3183–3194

    Article  PubMed  Google Scholar 

  • Elvander-Tottie E, Eriksson TM, Sandin J (2006) N-Methyl-d-aspartate receptors in the medial septal area have a role in spatial and emotional learning in the rat. Neuroscience 142:963–978

    Article  PubMed  CAS  Google Scholar 

  • Floresco SB, Tse MT (2007) Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J Neurosci 27:2045–2057

    Article  PubMed  CAS  Google Scholar 

  • Fone KCF, Porkess MV (2008) Behavioural and neurochemical effects of post-weaning social isolation in rodents—relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1082–1102

    Article  CAS  Google Scholar 

  • Forster GL, Blaha CD (2000) Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 12:3596–3604

    Article  PubMed  CAS  Google Scholar 

  • Francis DD, Diorio J, Plotsky PM, Meaney MJ (2002) Environmental enrichment reverses the effects of maternal separation on stress reactivity. J Neurosci 22:7840–7843

    PubMed  CAS  Google Scholar 

  • Fujishiro H, Umegaki H, Suzuki Y, Oohara-Kurotani S, Yamaguchi Y, Iguchi A (2005) Dopamine D2 receptor plays a role in memory function: implications of dopamine-acetylcholine interaction in the ventral hippocampus. Psychopharmacology 182:253–261

    Article  PubMed  CAS  Google Scholar 

  • Fulford AJ, Marsden CA (1998) Effect of isolation-rearing on conditioned dopamine release in vivo in the nucleus accumbens of the rat. J Neurochem 70:384–390

    PubMed  CAS  Google Scholar 

  • Fuster JM (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Lippincott-Raven, New York

    Google Scholar 

  • Gabbott PLA, Warner TA, Jays PRL, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177

    Article  PubMed  Google Scholar 

  • Garrido P, De Blas M, Del Arco A, Segovia G, Mora F (2008) Environmental enrichment supresses dopamine and coricosterone increases produced by acute stress in the prefrontal cortex of the rat. FENS Abstr 4: 114.8

  • Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C (1994) Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 668:71–79

    Article  PubMed  Google Scholar 

  • Gaspar P, Bloch B, Le Moine C (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 7:1050–1063

    Article  PubMed  CAS  Google Scholar 

  • Gaykema RP, Luiten PGM, Nyakas C, Traber J (1990) Cortical projection patterns of the medial septum–diagonal band complex. J Comp Neurol 293:103–124

    Article  PubMed  CAS  Google Scholar 

  • Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27:5730–5743

    Article  PubMed  CAS  Google Scholar 

  • Giménez-Llort L, Wang F-H, Ögren SO, Ferré S (2002) Local dopaminergic modulation of the motor activity induced by N-methyl-d-aspartate receptor stimulation in the ventral hippocampus. Neuropsychopharmacology 26:737–743

    Article  PubMed  Google Scholar 

  • Gispen-de Wied CC (2000) Stress in schizophrenia: an integrative view. Eur J Pharmacol 405:375–384

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Muly EC III, Williams GV (2000) D1 receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Grace AA (2008) Dopamine modulation of hippocampal-prefrontal cortical interaction drives memory-guided behavior. Cerebral Cortex 18:1407–1414

    Article  PubMed  Google Scholar 

  • Goto Y, O’Donnell P (2004) Prefrontal lesion reverses abnormal mesoaccumbens response in an animal model of schizophrenia. Biol Psychiatry 55:172–176

    Article  PubMed  Google Scholar 

  • Grace AA, Floresco SB, Goto Y, Lodge D (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227

    Article  PubMed  CAS  Google Scholar 

  • Green A, Cain E, Michael T, Bardo MT (2003) Environmental enrichment decreases nicotine-induced hyperactivity in rats. Psychopharmacology 170:235–241

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Uylings HBM (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126:3–28

    Article  PubMed  CAS  Google Scholar 

  • Hamilton DA, Kolb B (2005) Differential effects of nicotine and complex housing on subsequent experience-dependent structural plasticity in the nucleus accumbens. Behav Neurosci 119:355–365

    Article  PubMed  CAS  Google Scholar 

  • Hasue RH, Shammah-Lagnado SJ (2002) Origin of the dopminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 454:15–33

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder CA, Weiss IC, Domeney AM, Pryce C, Homberg J, Hedou G, Feldon J, Moran MC, Nelson P (2000) Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 100:749–768

    Article  PubMed  CAS  Google Scholar 

  • Hoebel BG, Avena NM, Rada P (2007) Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 7:617–627

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Ljungdahl A, Fuxe K, Johansson O (1974) Dopamine nerve terminals in the rat limbic cortex: aspects of the dopamine hypothesis of schizophrenia. Science 184:177–179

    Article  PubMed  CAS  Google Scholar 

  • Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500

    Article  PubMed  CAS  Google Scholar 

  • Howes SR, Dalley JW, Morrison CH, Robbins TW, Everitt BJ (2000) Leftward shift in the acquisition of cocaine self-administration in isolation-reared rats: relationship to extracellular levels of dopamine, serotonin and glutamate in the nucleus accumbens and amygdala-striatal FOS expression. Psychopharmacology 151:55–63

    Article  PubMed  CAS  Google Scholar 

  • Jackson ME, Frost AS, Moghaddam B (2001) Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens. J Neurochem 78:920–923

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Role LW (2008) Facilitation of cortico–amygdala synapses by nicotine: activity-dependent modulation of glutamatergic transmission. J Neurophysiol 99:1988–1999

    Article  PubMed  CAS  Google Scholar 

  • Jones GH, Hernández TD, Kendall DA, Marsden CA, Robbins TW (1992) Dopaminergic and serotonergic function following isolation rearing in rats: study of behavioural responses and postmortem and in vivo neurochemistry. Pharmacol Biochem Behav 43:17–35

    Article  PubMed  CAS  Google Scholar 

  • King D, Zigmond MJ, Finlay JM (1997) Effects of dopamine depletion in the medial prefrontal cortex on the stress-induced increase in extracellular dopamine in the nucleus accumbens core and shell. Neuroscience 77:141–153

    Article  PubMed  CAS  Google Scholar 

  • Kolb B, Gorny G, Li Y, Samaha AN, Robinson TE (2003a) Amphetamine os cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc Natl Am Sci 100:10523–10528

    Article  CAS  Google Scholar 

  • Kolb B, Gorny G, Söderpalm AHV, Robinson TE (2003b) Environmental complexity has different effects on the structure of neurons in the prefrontal cortex versus the parietal cortex or nucleus accumbens. Synapse 48:149–153

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169:215–233

    Article  PubMed  CAS  Google Scholar 

  • Kyd RJ, Bilkey DK (2005) Hippocampal place cells show increased sensitivity to changes in the local environment following prefrontal cortex lesions. Cerebral Cortex 15:720–731

    Article  PubMed  Google Scholar 

  • Larsson F, Winblad B, Mohammed AH (2002) Psychological stress and environmental adaptation in enriched vs. impoverished housed rats. Pharmacol Biochem Behav 73:193–207

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann NY Acad Sci 1003:138–158

    Article  PubMed  CAS  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Moghaddam B (2006) Cognitive dysfunction in schizophrenia. Arch Neurol 63:1372–1376

    Article  PubMed  Google Scholar 

  • Lewis SM, Lee FS, Todorova M, Seyfried T, Ueda T (1997) Syanptic vesicle glutamate uptake in epileptic (EL) mice. Neurochem Int 31:581–585

    Article  PubMed  CAS  Google Scholar 

  • Likhtik E, Pelletier JG, Paz R, Paré D (2005) Prefrontal control of the amygdala. J Neurosci 25:7429–7437

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  PubMed  CAS  Google Scholar 

  • Lu X-Y, Churchill L, Kalivas PW (1997) Expression of D1 receptor mRNA in projections from the forebrain to the ventral tegmental area. Synapse 25:205–214

    Article  PubMed  CAS  Google Scholar 

  • McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28

    Article  PubMed  CAS  Google Scholar 

  • Melendez RI, Gregory ML, Bardo MT, Kalivas PW (2004) Impoverished rearing environment alters metabotropic glutamate receptor expression and function in the prefrontal cortex. Neuropsychopharmacology 29:1980–1987

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, Berman KF (2005) Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 62:379–386

    Article  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui D-H, Tabira T (2000) Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 20:1568–1574

    PubMed  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam B (2002) Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 51:775–787

    Article  PubMed  CAS  Google Scholar 

  • Montaron MF, Deniau JM, Menetrey A, Glowinski J, Thierry AM (1996) Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit. Neuroscience 71:371–382

    Article  PubMed  CAS  Google Scholar 

  • Moore H, Lavin A, Grace AA (1998) Interaction between dopamine and NMDA delivered locally by microdialysis during in vivo intracellular recordings of rat prefrontal cortical neurons. Soc Neurosci Abst 24:2061

    Google Scholar 

  • Mora F, Sweeney KF, Rolls ET, Sanguinetti AM (1976) Spontaneous firing rate of neurons in the prefrontal cortex of the rat: evidence for a dopaminergic inhibition. Brain Res 116:516–522

    Article  PubMed  CAS  Google Scholar 

  • Mora F, Segovia G, Del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55:78–88

    Article  PubMed  CAS  Google Scholar 

  • Mora F, Segovia G, Del Arco A (2008) Glutamate-dopamine-GABA interactions in the aging basal ganglia. Brain Res Rev 58:340–353

    Article  PubMed  CAS  Google Scholar 

  • Omelchenko N, Sesack SR (2005) Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area. J Comp Neurol 483:217–235

    Article  PubMed  Google Scholar 

  • Öngür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex 10:206–219

    Article  PubMed  Google Scholar 

  • Otmakhova NA, Lisman JE (1998) Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J Neurosci 19:1437–1445

    Google Scholar 

  • Pantelis C, Barnes TRE, Nelson HE, Tanner S, Weatherley L, Owen AM, Robbins TW (1997) Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain 120:1823–1843

    Article  PubMed  Google Scholar 

  • Peinado JM, Mora F (1986) Glutamic acid as a putative transmitter of the interhemispheric cortico–cortical connections in the rat. J Neurochem 47:1598–1603

    Article  PubMed  CAS  Google Scholar 

  • Peters YM, O’Donnell P (2005) Social isolation rearing affects prefrontal cortical response to ventral tegmental area stimulation. Biol Psychiatry 57:1205–1208

    Article  PubMed  Google Scholar 

  • Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer UJ, Fendt M (2006) Prefrontal dopamine D4 receptors are involved in encoding fear extinction. NeuroReport 17:847–850

    Article  PubMed  CAS  Google Scholar 

  • Pinto A, Sesack SR (2008) Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors. Brain Struct Funct 213:159–175

    Google Scholar 

  • Pirot S, Jay TM, Glowinski J, Thierry AM (1994) Anatomical and electrophysiological evidence for an excitatory amino acid pathway from the thalamic mediodorsal nucleus to the prefrontal cortex in the rat. Eur J Neurosci 6:1225–1234

    Article  PubMed  CAS  Google Scholar 

  • Power AE, McIntyre CK, Litmanovich A, McGaugh JL (2003) Cholinergic modulation of memory in the basolateral amygdala involves activation of both m1 and m2 receptors. Behav Pharmacol 14:207–213

    PubMed  CAS  Google Scholar 

  • Pratt WE, Kelley AE (2004) Nucleus accumbens acetylcholine regulates appetitive learning and motivation for food via activation of muscarinic receptors. Behav Neurosci 118:730–739

    Article  PubMed  CAS  Google Scholar 

  • Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72

    Article  PubMed  Google Scholar 

  • Quirk GJ, Likhtik E, Pelletier JG, Paré D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central output neurons. J Neurosci 23:8800–8807

    PubMed  CAS  Google Scholar 

  • Robbins TW (2000a) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133:130–138

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (2000b) From arousal to cognition: integrative position of the prefrontal cortex. Prog Brain Res 126:469–483

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493:140–146

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236

    Article  PubMed  CAS  Google Scholar 

  • Roncada P, Bortolano M, Frau R, Saba P, Flore G, Soggiu A, Pisanu S, Amoresano A, Carpentieri A, Devoto P (2009) Gating deficits in isolation-reared rats are correlated with alterations in protein expression in nucleus accumbens. J Neurochem 108:611–620

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz JA, Grace AA (2002) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22:324–337

    PubMed  CAS  Google Scholar 

  • Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 78:57–65

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Nelson CL, Bruno JP (2005) Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull 31:117–138

    Article  PubMed  Google Scholar 

  • Schiller L, Donix M, Jähkel M, Oehler J (2006) Serotonin 1A and 2A receptor densities, neurochemical and behavioural characteristics in two closely related mice strains after long-term isolation. Prog Neuropsychopharmacol Biol Psychiatry 30:492–503

    Article  PubMed  CAS  Google Scholar 

  • Schrijver NCA, Bahr NI, Weiss IC, Würbel H (2002) Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacol Biochem Behav 73:209–224

    Article  PubMed  CAS  Google Scholar 

  • Schubert MI, Porkess MV, Dashdorj N, Fone KCF, Auer DP (2009) Effects of social isolation rearing on the limbic brain: a combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience 159:21–30

    Article  PubMed  CAS  Google Scholar 

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–57

    Article  PubMed  CAS  Google Scholar 

  • Segovia G, Yagüe AG, García-Verdugo JM, Mora F (2006) Environmental enrichment promotes neurogenesis and changes the extracellular concentrations of glutamate and GABA in the hippocampus of aged rats. Brain Res Bull 70:8–14

    Article  PubMed  CAS  Google Scholar 

  • Segovia G, Del Arco A, De Blas M, Garrido P, Mora F (2008) Effects of an enriched environment on the release of dopamine in the prefrontal cortex produced by stress and on working memory during aging in the awake rat. Behav Brain Res 187:304–311

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Carr DB (2002) Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol Behav 77:513–517

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Pickel VM (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 527:266–279

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Carr DB, Omelchenko N, Pinto A (2003) Anatomical substrates for glutamate–dopamine interactions. Ann NY Acad Sci 1003:36–52

    Article  PubMed  CAS  Google Scholar 

  • Silva-Gómez AB, Rojas D, Juárez I, Flores G (2003) Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128–136

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Tamás G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Rev 26:113–135

    Article  PubMed  CAS  Google Scholar 

  • Steketee JD (2003) Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Rev 41:203–228

    Article  PubMed  CAS  Google Scholar 

  • Taber MT, Fibiger HC (1995) Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors. J Neurosci 15:3896–3904

    PubMed  CAS  Google Scholar 

  • Taber MT, Das S, Fibiger HC (1995) Cortical regulation of subcortical dopamine release: mediation via the ventral tegmental area. J Neurochem 65:1407–1410

    Article  PubMed  CAS  Google Scholar 

  • Takahata R, Moghaddam B (2003) Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 28:1117–1124

    PubMed  CAS  Google Scholar 

  • Thierry AM, Godbout R, Mantz J, Glowinski J (1990) Influence of the ascending monoaminergic system on the activity of the rat prefrontal cortex. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MGP (eds) The prefrontal cortex: its structure, function and pathology. Elsevier, Amsterdam, pp 357–366

    Google Scholar 

  • Thompson TL, Moss RL (1995) In vivo stimulated dopamine release in the nucleus accumbens: modulation by the prefrontal cortex. Brain Res 686:93–98

    Article  PubMed  CAS  Google Scholar 

  • Tseng K, O’Donnell P (2004) Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24:5131–5139

    Article  PubMed  CAS  Google Scholar 

  • Tseng KY, Mallet N, Toreson KL, Le Moine C, Gonon F, O’Donnell P (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59:412–417

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM (2001) Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 63:241–320

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM, Schmidt WJ (2000) Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Crit Rev Neurobiol 14:131–142

    PubMed  CAS  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198

    Article  PubMed  CAS  Google Scholar 

  • Verney C, Alvarez C, Geffard M, Berger B (1990) Ultrastructural double-labelling study of dopamine terminals and GABA-containing neurons in rat anteromedial cerebral cortex. Eur J Neurosci 2:960–972

    Article  PubMed  Google Scholar 

  • Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20

    Article  PubMed  CAS  Google Scholar 

  • Vincent SL, Khan Y, Benes FM (1995) Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Synapse 19:112–120

    Article  PubMed  CAS  Google Scholar 

  • Walker E, Mittal V, Tessner K (2008) Stress and the hypothalamic pituitary adrenal axis in the development course of schizophrenia. Ann Rev Clin Psychol 4:189–216

    Article  Google Scholar 

  • Wang M, Goldman-Rakic PS (2004) D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons. Proc Natl Acad Sci USA 101:5093–5098

    Article  PubMed  CAS  Google Scholar 

  • Willner P, Ahlenius S, Muscat R, Scheel-Krüger J (1991) The mesolimbic dopamine system. In: Willner P, Scheel-Krüger J (eds) The mesolimbic dopamine system: from motivation to action. Wiley & Sons, Chichester, pp 3–15

    Google Scholar 

  • Wilson RS, Mendes de Leon CF, Barnes LL, Schneider JA, Bienias JL, Evans DA, Bennett DA (2002) Participation in cognitively stimulating activities and risk of incident Alzheimer disease. J Am Med Assoc 287:742–748

    Article  Google Scholar 

  • Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690

    Article  PubMed  CAS  Google Scholar 

  • Wisman LAB, Sahin G, Maingay M, Leanza G, Kirik D (2008) Functional convergence of dopaminergic and cholinergic inputs is critical for hippocampus-dependent working memory. J Neurosci 28:7797–7807

    Article  PubMed  CAS  Google Scholar 

  • Wood DA, Rebec GV (2009) Environmental enrichment alters neuronal processing in the nucleus accumbens core during appetitive conditioning. Brain Res 1259:59–67

    Article  PubMed  CAS  Google Scholar 

  • Yang CR, Chen L (2005) Targeting prefrontal cortical dopamine D1 and N-methyl-d-aspartate receptor interactions in Schizophrenia treatment. Neuroscientist 11:452–470

    Article  PubMed  CAS  Google Scholar 

  • Yang CR, Seamans JK, Gorelova N (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21:161–194

    Article  PubMed  CAS  Google Scholar 

  • You Z-B, Tzschentke TM, Brodin E, Wise RA (1998) Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats. J Neurosci 18:6492–6500

    PubMed  CAS  Google Scholar 

  • Young NA, Wintink AJ, Kalynchuk LE (2004) Environmental enrichment facilitates amygdala kindling but reduces kindling-induced fear in male rats. Behav Neurosci 118:1128–1133

    Article  PubMed  Google Scholar 

  • Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Apparsundaram S, Bardo MT, Dwoskin LP (2005) Environmental enrichment decreases cell surface expression of the dopamine transporter in rat medial prefrontal cortex. J Neurochem 93:1434–1443

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann A, Stauffacher M, Langhans W, Wurbel H (2001) Enrichment-dependent differences in novelty exploration in rats can be explained by habituation. Behav Brain Res 121:11–20

    Article  PubMed  CAS  Google Scholar 

  • Zornoza T, Cano-Cebrián MJ, Miquel M, Aragón C, Polache A, Granero L (2005) Hippocampal dopamine receptors modulate the motor activation and the increase in dopamine levels in the rat nucleus accumbens evoked by chemical stimulation of the ventral hippocampus. Neuropsychopharmacology 30:843–852

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Ministry of Science and Technology (SAF2006-01554), the Comunidad Autónoma de Madrid (CCG07-UCM/SAL-2162) and the University Complutense (PR34/07-15783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Del Arco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arco, A.D., Mora, F. Neurotransmitters and prefrontal cortex–limbic system interactions: implications for plasticity and psychiatric disorders. J Neural Transm 116, 941–952 (2009). https://doi.org/10.1007/s00702-009-0243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0243-8

Keywords

Navigation