[go: up one dir, main page]

Skip to main content

Advertisement

Log in

An efficient federated learning method based on enhanced classification-GAN for medical image classification

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The scarcity of medical images significantly hampers the advancement of artificial intelligence techniques in the medical field. Medical images face the issue of inferior training accuracy and efficiency in classification tasks due to insufficient labeled data and privacy preserving demands. To address these issues, we propose a new and efficient federated learning (FL) scheme based on blockchain, called FedBG, to generate realistic images to expand the dataset for medical image classification. First, we design an enhanced classification-GAN (EC-GAN) algorithm based on cross-entropy, which expands the training target of the generator from a single improvement of image fidelity to a direction related to the classification tasks. EC-GAN increases the diversity of generated images and reduces the risk of pattern collapse. Second, we improve the generator’s loss function, which is guided by the cross-entropy loss term of the classifier model and the gradient information from the discriminator model, to generate medical images with enhanced category features. This design overcomes the limitation of traditional GAN that focuses only on image authenticity judgment, and achieves the dual optimization of synthetic image and classification accuracy. Finally, we propose an improved consensus mechanism based on maximum mean discrepancy and data contribution to ensure the consistency and security of data in the blockchain. The mechanism optimizes the fairness and efficiency of the model training by dynamically evaluating the contribution of each participating node, and guarantees the trust system of FL. Experiments are performed on two datasets and results demonstrate that FedBG reduces the training time by 27–38% and improves the accuracy by 0.9–2% compared to existing methods while ensuring data privacy and generating high-quality images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availibility

The data set that support the findings of this study are openly available in: www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database?select=COVID-19_Radiography_Dataset.

References

  1. Pham, Q.-V., Nguyen, D.C., Huynh-The, T., Hwang, W.-J., Pathirana, P.N.: Artificial intelligence (ai) and big data for coronavirus (covid-19) pandemic: a survey on the state-of-the-arts. IEEE Access 8, 130820–130839 (2020). https://doi.org/10.1109/ACCESS.2020.3009328

    Article  Google Scholar 

  2. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Adv. Neural Inform. Process. Syst. 27 (2014)

  3. Li, M., Wang, J., Chen, Y., Tang, Y., Wu, Z., Qi, Y., Jiang, H., Zheng, J., Tsui, B.M.W.: Low-dose ct image synthesis for domain adaptation imaging using a generative adversarial network with noise encoding transfer learning. IEEE Trans. Med. Imaging 42(9), 2616–2630 (2023). https://doi.org/10.1109/TMI.2023.3261822

    Article  MATH  Google Scholar 

  4. Jiang, G., Wei, J., Xu, Y., He, Z., Zeng, H., Wu, J., Qin, G., Chen, W., Lu, Y.: Synthesis of mammogram from digital breast tomosynthesis using deep convolutional neural network with gradient guided cgans. IEEE Trans. Med. Imaging 40(8), 2080–2091 (2021). https://doi.org/10.1109/TMI.2021.3071544

    Article  Google Scholar 

  5. Han, C., Rundo, L., Araki, R., Nagano, Y., Furukawa, Y., Mauri, G., Nakayama, H., Hayashi, H.: Combining noise-to-image and image-to-image gans: Brain mr image augmentation for tumor detection. IEEE Access 7, 156966–156977 (2019). https://doi.org/10.1109/ACCESS.2019.2947606

    Article  Google Scholar 

  6. Tajmirriahi, M., Kafieh, R., Amini, Z., Lakshminarayanan, V.: a dual-discriminator fourier acquisitive gan for generating retinal optical coherence tomography images. IEEE Trans. Instrum. Measur. 71 (2022). https://doi.org/10.1109/TIM.2022.3189735

  7. Manu, D., Yao, J., Liu, W., Sun, X.: Graphganfed: a federated generative framework for graph-structured molecules towards efficient drug discovery. IEEE/ACM Trans. Comput. Biol. Bioinform. 1–14 (2024). https://doi.org/10.1109/TCBB.2024.3349990

  8. Zhu, J., Liu, Y., Zhang, Y., Chen, Z., Wu, X.: Multi-attribute discriminative representation learning for prediction of adverse drug–drug interaction. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 10129–10144 (2022). https://doi.org/10.1109/TPAMI.2021.3135841

    Article  MATH  Google Scholar 

  9. Liu, G., Liao, Y., Wang, F., Zhang, B., Zhang, L., Liang, X., Wan, X., Li, S., Li, Z., Zhang, S., Cui, S.: Medical-vlbert: medical visual language bert for covid-19 ct report generation with alternate learning. IEEE Trans. Neural Netw. Learn. Syst. 32(9), 3786–3797 (2021). https://doi.org/10.1109/TNNLS.2021.3099165

    Article  MATH  Google Scholar 

  10. Guan, J., Li, R., Yu, S., Zhang, X.: A method for generating synthetic electronic medical record text. IEEE/ACM Trans. Comput. Biol. Bioinform. 18(1), 173–182 (2021). https://doi.org/10.1109/TCBB.2019.2948985

    Article  MATH  Google Scholar 

  11. Kuo, C.-E., Lu, T.-H., Chen, G.-T., Liao, P.-Y.: Towards precision sleep medicine: Self-attention gan as an innovative data augmentation technique for developing personalized automatic sleep scoring classification. Comput. Biol. Med. 148 (2022). https://doi.org/10.1016/j.compbiomed.2022.105828

  12. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282 (2017). PMLR

  13. Nguyen, D.C., Pathirana, P.N., Ding, M., Seneviratne, A.: Bedgehealth: a decentralized architecture for edge-based iomt networks using blockchain. IEEE Internet Things J. 8(14), 11743–11757 (2021). https://doi.org/10.1109/JIOT.2021.3058953

    Article  Google Scholar 

  14. Xu, C., Qu, Y., Luan, T.H., Eklund, P.W., Xiang, Y., Gao, L.: A lightweight and attack-proof bidirectional blockchain paradigm for internet of things. IEEE Internet Things J. 9(6), 4371–4384 (2022). https://doi.org/10.1109/JIOT.2021.3103275

    Article  Google Scholar 

  15. Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., Pinheiro, P.R.: Covidgan: data augmentation using auxiliary classifier gan for improved covid-19 detection. IEEE Access 8, 91916–91923 (2020). https://doi.org/10.1109/ACCESS.2020.2994762

    Article  Google Scholar 

  16. Gao, H., Yu, X., Xu, Y., Kim, J.Y., Wang, Y.: Monoli: precise monocular 3-d object detection for next-generation consumer electronics for autonomous electric vehicles. IEEE Trans. Consumer Electron. 70(1), 3475–3486 (2024). https://doi.org/10.1109/TCE.2024.3353530

    Article  MATH  Google Scholar 

  17. Motamed, S., Rogalla, P., Khalvati, F.: Randgan: randomized generative adversarial network for detection of covid-19 in chest X-ray. Sci. Rep. 11(1), 8602 (2021)

    Article  MATH  Google Scholar 

  18. Cao, Z., Feng, C., Shen, Y., Ye, G., Xu, H., Wu, J., Wu, Z., Gao, H., Zhu, H.: Dpml: prior-guided multitask learning for dental object recognition on limited panoramic radiograph dataset. Expert Syst. Appl. 254 (2024). https://doi.org/10.1016/j.eswa.2024.124446

  19. Zhao, D., Zhu, D., Lu, J., Luo, Y., Zhang, G.: Synthetic medical images using f &bgan for improved lung nodules classification by multi-scale vgg16. Symmetry-Basel 10(10) (2018). https://doi.org/10.3390/sym10100519

  20. Xu, Y., Xu, X., Gao, H., Xiao, F.: Sgdm: an adaptive style-guided diffusion model for personalized text to image generation. IEEE Trans. Multimed, 1–10 (2024). https://doi.org/10.1109/TMM.2024.3399075

  21. Zhang, Z., Li, X., Xu, X., Lu, C., Yang, Y., Shi, Z.: Web-aided data set expansion in deep learning: evaluating trainable activation functions in resnet for improved image classification. Int. J. Web Inform. Syst. 20(4), 452–469 (2024). https://doi.org/10.1108/IJWIS-05-2024-0135

    Article  MATH  Google Scholar 

  22. Jiang, Y., Chen, H., Loew, M., Ko, H.: Covid-19 ct image synthesis with a conditional generative adversarial network. IEEE J. Biomed. Health Inform. 25(2), 441–452 (2021). https://doi.org/10.1109/JBHI.2020.3042523

    Article  MATH  Google Scholar 

  23. Bi, Z., Sun, S., Zhang, W., Shan, M.: Click-through rate prediction model based on graph networks and feature squeeze-and-excitation mechanism. Int. J. Web Inform. Syst. 20(4), 341–357 (2024). https://doi.org/10.1108/IJWIS-07-2023-0110

    Article  MATH  Google Scholar 

  24. Hussain, B.Z., Andleeb, I., Ansari, M.S., Joshi, A.M., Kanwal, N.: Wasserstein gan based chest x-ray dataset augmentation for deep learning models: Covid-19 detection use-case. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2058–2061 (2022). https://doi.org/10.1109/EMBC48229.2022.9871519

  25. Wu, Y., Kang, Y., Luo, J., He, Y., Yang, Q.: Fedcg: leverage conditional gan for protecting privacy and maintaining competitive performance in federated learning (2021). arXiv preprint arXiv:2111.08211

  26. Zeng, Q., Zhou, L., Lian, Z., Huang, H., Kim, J.Y.: Privacy-enhanced federated generative adversarial networks for internet of things. Comput. J. 65(11), 2860–2869 (2022). https://doi.org/10.1093/comjnl/bxac060

    Article  MATH  Google Scholar 

  27. Yang, Y., Zhang, Z., Yang, Q.: Communication-efficient federated learning with binary neural networks. IEEE J. Select. Areas Commun. 39(12), 3836–3850 (2021). https://doi.org/10.1109/JSAC.2021.3118415

    Article  MATH  Google Scholar 

  28. Hardy, C., Le Merrer, E., Sericola, B.: Md-gan: Multi-discriminator generative adversarial networks for distributed datasets. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 866–877 (2019). https://doi.org/10.1109/IPDPS.2019.00095

  29. Lian, Z., Yang, Q., Wang, W., Zeng, Q., Alazab, M., Zhao, H., Su, C.: Deep-fel: decentralized, efficient and privacy-enhanced federated edge learning for healthcare cyber physical systems. IEEE Trans. Netw. Sci. Eng. 9(5), 3558–3569 (2022). https://doi.org/10.1109/TNSE.2022.3175945

    Article  MATH  Google Scholar 

  30. Li, W., Chen, J., Wang, Z., Shen, Z., Ma, C., Cui, X.: Ifl-gan: improved federated learning generative adversarial network with maximum mean discrepancy model aggregation. IEEE Trans. Neural Netw. Learn. Syst. 34(12), 10502–10515 (2023). https://doi.org/10.1109/TNNLS.2022.3167482

    Article  Google Scholar 

  31. Rasouli, M., Sun, T., Rajagopal, R.: Fedgan: Federated generative adversarial networks for distributed data (2020). arXiv preprint arXiv:2006.07228

  32. Lin, T., Kong, L., Stich, S.U., Jaggi, M.: Ensemble distillation for robust model fusion in federated learning. Adv. Neural Inform. Process. Syst. 33, 2351–2363 (2020)

    MATH  Google Scholar 

  33. Lu, W., Hu, X., Wang, J., Xie, X.: Fedclip: fast generalization and personalization for clip in federated learning (2023). arXiv preprint arXiv:2302.13485

  34. Liu, W., Li, Y., Wang, X., Peng, Y., She, W., Tian, Z.: A donation tracing blockchain model using improved dpos consensus algorithm. Peer-To-Peer Netw. Appl. 14(5, SI), 2789–2800 (2021). https://doi.org/10.1007/s12083-021-01102-9

  35. Tang, F., Wen, C., Luo, L., Zhao, M., Kato, N.: Blockchain-based trusted traffic offloading in space-air-ground integrated networks (sagin): a federated reinforcement learning approach. IEEE J. Select. Areas Commun 40(12, SI), 3501–3516 (2022). https://doi.org/10.1109/JSAC.2022.3213317

  36. Abdel-Basset, M., Moustafa, N., Hawash, H.: Privacy-preserved cyberattack detection in industrial edge of things (ieot): a blockchain-orchestrated federated learning approach. IEEE Trans. Ind. Inform. 18(11), 7920–7934 (2022). https://doi.org/10.1109/TII.2022.3167663

    Article  MATH  Google Scholar 

  37. Tang, F., Wen, C., Luo, L., Zhao, M., Kato, N.: Blockchain-based trusted traffic offloading in space-air-ground integrated networks (sagin): A federated reinforcement learning approach. IEEE J. Select. Areas Commun. 40(12), 3501–3516 (2022). https://doi.org/10.1109/JSAC.2022.3213317

    Article  MATH  Google Scholar 

  38. Wang, Z., Duan, S., Wu, C., Lin, W., Zha, X., Han, P., Liu, C.: Generative data augmentation for non-iid problem in decentralized clinical machine learning. In: 2022 4th International Conference on Data Intelligence and Security (ICDIS), pp. 336–343 (2022). https://doi.org/10.1109/ICDIS55630.2022.00058

  39. Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Zomaya, A.Y.: Federated learning for covid-19 detection with generative adversarial networks in edge cloud computing. IEEE Internet Things J. 9(12), 10257–10271 (2022). https://doi.org/10.1109/JIOT.2021.3120998

    Article  Google Scholar 

  40. Niu, W., She, W., Zhong, L., Wang, Y., Tian, Z., Liu, W.: Elite-centered artificial bee colony algorithm with extended solution boundary. Appl. Soft Comput. 148 (2023). https://doi.org/10.1016/j.asoc.2023.110906

  41. Kumar, R., Khan, A.A., Kumar, J., Zakria, Golilarz, N.A., Zhang, S., Ting, Y., Zheng, C., Wang, W.: Blockchain-federated-learning and deep learning models for covid-19 detection using ct imaging. IEEE Sens. J. 21(14), 16301–16314 (2021). https://doi.org/10.1109/JSEN.2021.3076767

  42. Otoum, S., Al Ridhawi, I., Mouftah, H.T.: Preventing and controlling epidemics through blockchain-assisted ai-enabled networks. IEEE Netw. 35(3), 34–41 (2021). https://doi.org/10.1109/MNET.011.2000669

    Article  MATH  Google Scholar 

  43. Passerat-Palmbach, J., Farnan, T., McCoy, M., Harris, J.D., Manion, S.T., Flannery, H.L., Gleim, B.: Blockchain-orchestrated machine learning for privacy preserving federated learning in electronic health data. In: 2020 IEEE International Conference on Blockchain (Blockchain 2020), pp. 550–555 (2020). https://doi.org/10.1109/Blockchain50366.2020.00080. (IEEE; IEEE Comp Soc; IEEE Tech Comm Scalable Comp. 3rd IEEE International Conference on Blockchain (Blockchain), ELECTR NETWORK, NOV 02-06, 2020)

  44. Chowdhury, M.E.H., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M.A., Mahbub, Z.B., Islam, K.R., Khan, M.S., Iqbal, A., Emadi, N.A., Reaz, M.B.I., Islam, M.T.: Can ai help in screening viral and covid-19 pneumonia? IEEE Access 8, 132665–132676 (2020). https://doi.org/10.1109/ACCESS.2020.3010287

    Article  Google Scholar 

  45. Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Kashem, S.B.A., Islam, M.T., Maadeed, S.A., Zughaier, S.M., Khan, M.S., Chowdhury, M.E.H.: Exploring the effect of image enhancement techniques on covid-19 detection using chest X-ray images. Comput. Biol. Med. 132 (2021). https://doi.org/10.1016/j.compbiomed.2021.104319

  46. Afshar, P., Heidarian, S., Naderkhani, F., Oikonomou, A., Plataniotis, K.N., Mohammadi, A.: Covid-caps: a capsule network-based framework for identification of covid-19 cases from X-ray images. Pattern Recogn. Lett. 138, 638–643 (2020)

    Article  Google Scholar 

Download references

Funding

This research was funded by the Henan Key Laboratory of Network Cryptography Technology (Grant No.LNCT2022-A04) and the Key Scientific Research Project of Colleges and Universities in Henan Province NO.24A520045.

Author information

Authors and Affiliations

Authors

Contributions

Wei Liu: methodology, conceptualization, funding acquisition, project administration, resources, supervision, writing—review and editing. Yurong Zheng: investigation, methodology, software, validation, visualization, writing—original draft, writing—review and editing, data curation. Zhihui Xiang: data curation, resources, validation. Yingmeng Wang: investigation, software, data curation. Zhao Tian: Data curation, formal analysis, investigation. Wei She: conceptualization, resources, supervision, formal analysis.

Corresponding author

Correspondence to Wei She.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zheng, Y., Xiang, Z. et al. An efficient federated learning method based on enhanced classification-GAN for medical image classification. Multimedia Systems 31, 15 (2025). https://doi.org/10.1007/s00530-024-01564-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-024-01564-w

Keywords